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FOREWORD

The increasing size and complexity of new structural forces in engineering have
made it necessary for designers to be aware of their dynamic behaviour. Dynamics
is a subject which has traditionally been poorly taught in most engineering
courses. This book was conceived as a way of providing engineers with a deeper
knowledge of dynamic analysis and of indicating to them how some of the new
vibrations problems can be solved. The authors start from basic principles

to end up with the latest random vibration applications. The book originated

in a week course given annually by the authors at the Computational Mechanics
Centre, Ashurst Lodge, Southampton, England. Special care was taken to ensure

continuity in the text and notations.

Southampton 1984
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CHAPTER 1

INTRODUCTION TO VIBRATION
by

G.B. Warburton

1. Introductory Remarks

In recent years the number of structures, for which the dynamic forces, likely to
be encountered in service, have required investigation at the design stage, has
increased. Several factors have contributed to this increase: growth in size of
structures of various types; consequential increased importance of wind forces;
efforts to reduce the effects of earthquakes on structures and to prevent total
collapse; design of off-shore structures. Two important questions are: why is it
essential to include dynamic effects in structural analysis and why is this a more

difficult task than conventional (static) structural analysis?

Suppose that the stresses in a structure are known for: (a) a static force P at a
particular location; (b) a force at the same location that varies in magnitude with
time and has a maximum value of P. Then the dynamic magnification factor is the
maximum stress at a point for (b) / the stress at the same point for (a). This
factor depends upon how the force varies with time, the distribution of stiffness
and mass in the structure and the damping present. In certain circumstances it will
be very large; in others very small. Obviously, if there is any possibility of the
dynamic magnification factor being significantly greater than unity, a dynamic
anélysis of the structure is necessary. This book is primarily concerned with
methods of determining dynamic magnification factors for various types of loads and
structures. However, no simple rules exist for these factors. Thus there are
greater conceptual difficulties for dynamic problems than for comparable static
problems, as the intuition and experience, which help an engineer to form a reason-
able view of the safety of a structure under static forces, do not lead to an esti-
mate of the relevant dynamic magnification factors. Also the time dependence of
stresses, displacements etc. and the necessity to include mass and damping effects
make dynamic analysis more complex than its static counterpart. There are also
practical difficulties; some dynamic loads, e.g. wind forces, and most damping

forces can only be estimated.

In addition to the possibility of elastic failure of a structure if dynamic effects
are neglected, long-time repetition of dynamic stresses, whose magnitudes would be

considered to be safe from static considerations, may lead to cumulative fatigue

failures.



In this chapter the concepts that are relevant to vibration analysis of structures
will be discussed briefly. Emphasis is on the response of structures to dynamic
forces and how different types of force time variation influence the choice of
method. Many of the concepts are introduced by considering the simplest vibrating
structure; then, as this simple structure has limited practical applications, gen-
eral structures are discussed. For these the normal mode method of determining
response is given particular attention, because it illustrates the physical behaviou?
of structures better than other methods. Lastly dynamic interaction problems are
discussed; here interaction exists between the vibrations of a structure and those

of the underlying soil or the surrounding fluid. Many current practical problems,

and also much current research effort, involve interaction effects.

Naturally in a single chapter the major topics of structural vibration can only be
mentioned. Most of these topics will be studied in depth in subsequent chapters.

It is hoped that their introduction here will illustrate their interrelationship and
show how they contribute to the determination of stresses in complex structures

caused by various types of dynamic excitation.

2. Single Degree of Freedom Systems: Equation of Motion and Types of Problem

Although the dynamic response of a practical structure will be complex, it is necess-
ary to begin our study by considering the fundamentals of vibration of simple systems.
A rough guide to the complexity of a dynamical system is the number of degrees of
freedom  possessed by the system. This number is equal to the number of independent
coordinates required to specify completely the displacement of the system. For
instance, a rigid body constrained to move in the X Y plane requires three coord-
inates to specify its position completely - namely the linear displacements in the

X~ and Y-directions and the angular rotation about the Z-axis (perpendicular to the
plane X Y); thus this body has three degrees of freedom. The displacement of an
elastic body, e.g. a beam, has to be specified at each point by using a continuous
equation so that an elastic body has an infinite number of degrees of freedom. In

a dynamical problem the number of modes of vibration in which a structure can respond
is equal to the number of degrees of freedom, thus the simplest structure has only

one degree of freedom.

Figure 1 shows the conventional representation of a system with one degree of free-
dom; it consists of a mass m constrained to move in the X-direction by frictionless
guides and restrained by the spring of stiffness k. It is assumed that the mass of
the spring is negligible compared to m. Thus the displacement of the system is
specified completely by x, the displacement of the mass, and the system has one
degree of freedom. For the purpose of analysing their dynamic response it is

possible to treat some simple structures as systems with one degree of freedom.



Figure 1 Single degree of freedom system
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In the simple frame of Figure 2 it is assumed that the horizontal member BC is rigid,
that the vertical members AB and CD have negligible mass compared to that of BC, and
that in any swaying motion BC remains horizontal. Then the motion of the system is
given by the horizontal displacement of BC, x, and the frame can be treated as a
system with one degree of freedom. Equations and results derived for the system of

Figure 1 will be applicable to that of Figure 2.

The general equation of motion is derived by considering the forces acting on the
mass m of Figure 1 at any time t. If the displacement of the mass, x, is measured
from the position of static equilibrium, the gravity force mg need not be included
in the eqﬁation as it is balanced by the restoring force in the spring kxS where x
is the static deflection of m and k is the stiffness of the spring or the force
required to produce unit deflection in the spring; it is assumed that the spring

is linear, i.e. k is a constant.

In any real system there will be some damping; this may take various forms, but here
viscous damping will be assumed, and thus the damping force is proportional to the
velocity X and opposes the motion. (A dot over a symbol indicates differentiation
with respect to time; thus velocity dx/dt = X and acceleration d?x/dt? =X.)
Conventionally viscous damping is represented by the dashpot, shown in parallel

with the spring in Figure 1; in practice the damping force is caused by internal

friction in the spring etc. and thus is collinear with the spring force.

Newton's second law of motion is applied to the system; this can be expressed as

the product of the mass and the resulting acceleration in the X-direction is equal
to the net applied force in the X-direction. TFor this system the latter has three
components, namely the applied force P(t), the restoring or spring force (-kx) and

the damping force (-cx). Thus the equation of motion is

mX = P(t) - kx - cx
or

mX + cx + kx = P(t) (1)
The solution of equation (1) gives the response of the mass to the applied force P(t)

Equation (1) represents also the motion of the member BC of the frame of Figure 2,
if m is the mass of BC, k is the combined stiffness of the stanchions AB and DC,
and it is assumed that a viscous damping force cx opposes the motion of BC. The

equations of motion for various single degree of freedom systems are derived in

Chapter 2.



Vibrations may be excited by impressed motion at the support. Considering Figure
2, to mepresent a simple structure, its response to vibrations transmitted through
the ground by earthquakes, traffic, pile-drivers, hémmers, explosions etc. is
important in practice. Suppose that the support A in Figure 1 is given a vertical
displacement xo(t) or the foundation AD in Figure 2 is given a horizontal displace-
ment xo(t). In both cases the restoring force on the mass due to deformation of
the spring or stanchions is k(x—xo). The damping force is proportional to the rel-
ative velocity across the dashpot (Figure 1) and is c(x - ko). If the force P(t),

shown in Figure 1 and 2, is no longer acting, the equation of motion is:
mx = - ki(x - xo) - c(x - xo)
i.e. mX+cx+kx = kxo + cx (2)

Writing equation (2) in terms of the displacement of the mass relative to the

support (i.e. the deformation of the spring or stanchions), xr =X - xo,
mX +cx +kx = -mX (3)

The solution of equation (3) yields the relative displacement, which is proportional
to the stress in the elastic member. This solution can be obtained when the base
acceleration io is specified. In practical problems relating to excitation due to
imposed motion of the base, the acceleration is usually known, rather than the dis-

placement and velocity, although the latter can be found by integration.

Equations (1), (2) and (3) are mathematically similar. Thus discussion of the
different types of excitation, i.e. how the applied force or base motion varies with
time, applies to all three equations. Solutions obtained from one equation can be
used to infer solutions for either of the others. Only a change of nomenclature is

required to interchange solutions between equations (1) and (3).

Considering the force P(t), shown in Figures 1 and 2, there are three main types of
excitation: (i) Harmonic forces, such as P(t) = Po sin wt or P(t) = Cw? sin wt,
(the latter is typical of a component of the force produced by out of balance in a
rotating machine). A force which is periodic but not harmonic can be expressed as
a sum of harmonic terms, using Fourier series, and for a linear system the total
response can be obtained by superposing the individual response from each harmonic
component of the force. Thus forces which are periodic but not harmonic will not
be considered further. (ii) Transient or aperiodic forces: usually these are
forces which are applied suddenly or for a short interval of time; simple examples,

illustrating the two types, are shown in Figure 3(a) and (b). (iii) Random forces:



the force P(t) cannot be specified as a known function of time, but can be des-
cribed only in statistical terms; forces due to gusts of wind form an example of

this type of excitation.

For (i) the steady-state response of the mass to the harmonic force is required.
For (ii) the transient response is required, usually the maximum displacement of
the mass or the maximum extension of the spring (the stress in the elastic member
of the system is proportional to this extension), occurring during the period of
application of the force or in the motion immediately following this period, will

be of greatest interest. For (iii) the response can only be determined statistically.

Mathematically, the solution of equation (1) consists of two parts: the complement-
ary function, which is obtained by solving the equation with the right hand side
equal to zero, i.e. P(t) = 0, and the particular integral which depends on the

form of P(t). Physically, the complementary function represents free damped
vibrations, i.e. the vibrations that occur if the mass is given an initial displace-

ment or velocity and released. The solution for free vibrations can be written

x = exp(- Ywnt)(A sin mdt + B cos wdt) (4)
%
where o = w (1 - v2)” (5)
d n
w? = k/m =c/c_ and c¢_= 2(1r(m)1/2 = 2k/w_ = 2mw (6)
n Y= c c - n = n

In equation (4) the constants A and B are chosen to satisfy the initial conditions,
i.e. the values of x and X at time t = 0. Equation (4) represents a damped
oscillation: x=+0 as t+ » ., It has been assumed that the damping ratio y < 1.
In practice, Yy << 1; thus from equation (5) wy T W Now w is the (circular or
radian) natural frequency of the system and is of great importance in vibration
analysis. If an initial displacement is given to the mass in Figure 1 or 2, the

frequency of the ensuing vibrations is strictly but provided that y << 1 it

®

d)
can be assumed that the natural frequency w, has been measured. The assumption that
Y << 1 can be checked by determining vy from the rate of decay of successive oscil-

lations. (See Chapter 2 for further details).

3. Response

The response of systems with one degree of freedom (Figures 1 and 2) to the various

types of excitation force will be summarised.



Considering a harmonic applied force, i.e. P(t) = PO cos wt, where P_ is a constant

and w is the (radian) frequency of the force, equation (1) becomes
mX +c X+ kx = P cos wt (7)

The complete solution consists of free damped vibrations [equation (4)] and a
particular integral. However, the former dies out and thus the steady state solution
is given by the particular integral, which can be shown to be

P -

5 cos(wt B)

x = Y (8)
[(k - mw2)? + c?w?2)]?

X cw
with tan B i rem——
Using definitions (6) and putting r = m/wn, i.e. r is the ratio of the excitation
frequency to the natural frequengy, the steady state amplitude X from equation (8)
is

kX 1

2 _ (9)
Po [(1 - r2)2 4+ (2*{r‘)2]1/2

Now Po/k is the static deflection of the mass due to a static force Po’ so kX/P0 is
the dynamic magnification factor. Equation (9) introduces the phenomenon of reson-
ance. The dynamic magnification factor is a function of the frequency ratio r and
the damping ratio y. For y small it has a sharp peak when f = 1 and this peak
value, obtained by putting r = 1 in equation (9), is 1/2y. Thus for practical sys-
tems with low damping the dynamic magnification factor is very large when the
excitation and natural frequencies coincide. However, well away from resonance the

dynamic magnification factor is not large. (See Chapter 2 for further details).

Looking ahead to more complex structures, the viscous damping mechanism, shown in
Figure 1 and used in the above equations, causes the response at higher frequencies
(strictly higher resonances) to be underestimated. To overcome this difficulty
viscous damping is replaced by hysteretic damping, i.e. the damping term ¢ % in
equation (1) is replaced by hx/w, where h is the hysteretic damping constant and w
is the excitation frequency. With the viscous damper the energy dissipated per

cycle increases linearly with the frequency, although the amplitude of vibration is

kept constant. For a hysteretic damper the energy dissipated per cycle is independ

ent of the frequency. For hysteretic damping equation (7) is replaced by

mX+h %X/v+ kx = PO cos wt (10)



If h/k = u, the steady state amplitude is

kX _ 1 (11)

o [(1 - r2)? + uz]y2

The maximum value of the dynamic magnification factor is 1/p and occurs when r = 1.

For a general transient force P(t) the solution of egquation (1) is given by the
Duhamel integral, which is derived in Chapter 2, or by the convolution integral
using Laplace transforms, and is

t
X = — J P(t) exp [- Yo (t - 1)] sin w (t - 1)dr (12)
d

d
o

In equation (12) it is assumed that at t = O the displacement and velocity of the

mass are zero. If these conditions are not satisfied, free vibrations, equation (4)

must be added with A and B determined from the non-zero conditions. [Equation (12)

could be used to determine the complete response to a harmonic applied force, but

other methods of solution are simpler.] Considering the step function force of

Figure 3a, P(t) = PO, t > 0, equation (12) is integrated and the response

kx _ Y ;
P = 1 - exp(—ymnt) [ cos wdt + % sin wdt ] (13)

o (1 -v%)

This gives damped oscillations about the new mean position, given by kx/PO = 1.

The maximum response occurs when w.t = v and is given by

d
kx - Y
= = 1 + exp[ — 4 ] (14)
[ Po Jmax (1 - 72)4

The variation of the dynamic magnification factor from equation (14) with the damping
factor y is shown in Table 1. For small damping the factor is relatively insensitive
to y. For comparison the maximum dynamic magnification factor associated with a

harmonic force, namely 1/2y for r = 1, is also given in the table.

Next consider the response of the system of Figure 1 to a sinusoidal force of finite

duration, i.e.

.1t
P(t) = Po sin = 0<tg NtO (15)
[¢)
P(t) = O, t > Nt
[¢)

where N is an integer. [ The force P(t) is shown in Figure 3(b) for N = 1 ].



The response for t { Nt is obtained by substituting equation (15) in (12). For t

> NtO free damped vibrations occur and are given by equation (4) with A and B chosen
to give appropriate continuity conditions at t = Nto. Figure 4 shows the dynamic
magnification factor, i.e. the maximum value of kx/P0 with respect to time, plotted
against tO/T for zero damping (v = 0) and n = 1, 2 and 4; T(=2w/wn) is the period
of the system. Outside the range of values of to/T for which (kx/Po)max has been
plotted for N = 2 and 4, its behaviour is more complicated but values are signif-
icantly less than the peak values shown. When to/T = 0.5, (kx/PO)max = Nw/2. Thus
for an excitation force of two complete waves (N = 4) the dynamic magnification
factor can be as large as 6.3, For the plotted ranges the maximum displacement
occurs in the residual or free vibration era (i.e. t > Nto) if tO/T < 0.5 and occurs

in the forced vibration era (i.e. t < Nto) if tO/T > 0.5.

For a random variable the spectral density shows the distribution of the harmonic
content of the variable over the frequency range from zero to infinity. If the.
spectral density is specified, the mean value of the square of the variable can be
obtained. For stationary ergodic random processes with Gaussian or normal probab-
ility distributions (these standard assumptions for random vibration theory are
described in Chapter 14), if Sp(w) and Sx(w) are the spectral densities of the in-~
put force and response respectively for the system of Fig. 1, the mean square values

are given by

©

< P2(t) > = %;r f Sp(m) dw (16)
o]
and ©
< x2(t) > = % J 5, () do (17)
[o]

It can be shown (Chapter 14) that the spectral densities are related by

Sp(w)
k2{(1 -~ r%)% + (2yr)?)] (18)

Sx(w) =

[If hysteretic damping replaces viscous damping in Fig. 1, 2yr in equation (18) is
replaced by u]. If the spectral density of the force is known, the mean square
value of the response is obtained from equations (17) and (18). The simplest force
spectrum is: Sp(m) = So, a constant; i.e. the spectrum is uniform over the com-
plete frequency range and is called white noise. The corresponding mean response

is, from the calculus of residues,

< x%(t) > =

By K2 (19)
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Figure 4 Dynamic magnification factor for a single
degree of freedom system, subjected to a
transient force:

P(t) = Po sin wt/to, 0 <t <Nt

=0 , t > Nt

Figure 5 Multi degree of freedom system
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Although useful for analytical purposes, white noise predicts an infinite mean
square value for P(t) [see equation (16)]. A more practical assumption is that Sp(m)
is uniform and equal to SO up to a cut-off frequency Wes which is well above the
natural frequency mn, and Sp(m) =0 for w > mc. Provided that wc/mn > 2 and y < 0.1
the mean square response is given to 1 per cent accuracy by equation (19). For com-—
parison with the dynamic magnification factors for harmonic and transient excitation,
values of 3k cx/cp are given in Table 1 for a spectrum Sp(w) that is flat up to

w = Wos and wc/wn = 2; ox and op are the root mean square values of response and

%
2,  An absolute maximum

force from equations (16) and (19), i.e. o, = [ < x%(t) >]
value for x for a random process cannot be specified; the factor 3 has been intro-
duced because for a Gaussian distribution the probability of |x| exceeding 3cx is

only 0.3 per cent.

In this section the dynamic response of single degree of freedom systems to the
three major types of excitation, harmonic, transient and random, has been outlined.
Although equations have been given in terms of force excitation, corresponding
equations for excitation by support or foundation motion can easily be formulated.
The possible existence of large dynamic magnification factors in unfavourable cir-
cumstances has been demonstrated by the simple examples for which results are given

in Table 1 and Figure 4.

TABLE 1.

Dynamic Magnification Factors for Single Degree of

Freedom Systems with Different Types of Excitation

Excitation Tabulated Damping Factor Yy
value 0 0.01 0.02 0.05 0.1
Step function (kx/P ) 2 1.969 1.939 1.854 1.729
. o’ 'max

of Fig. 3a
Harmonic (kX/PO) for r=1 50 25 10 5
Random, Sp(w) = So

with cut-off at 3k ox/op 18.8 13.3 8.41 5.95
w = 2w

c n

4. General Structures: Equations of Motion

The concepts, developed for single degree of freedom systems, assist in the under-
standing of the dynamic behaviour of general structures. Figure 5 shows the con-

ventional representation of a system with several degrees of freedom. Each mass is
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constrained to move only in the X-direction. Thus the displacement x. (measured

from the position of static equilibrium) defines the instantaneous position of mass
mj. Figure 6 represents a shear building with n storeys; the assumptions are the
same as those used to describe the structure of Figure 2. If kj is the combined
stiffness in flexure of the pair of stanchions below the jth floor, xj is the hori-
zontal displacement of the jth floor of mass mj, and it is assumed that relative
motion between adjacent floors is resisted by viscous damping forces in the stanchions
between these floors, the equation of motion for mass mj in either Figures 5 or 6 is

m, X, + c.{x, - %x. ,) +¢c, (x.-x. )+ Kk, (x,-x..)
J 3 Jj-1 J+1°7J Jj+1 3 J-

+ kj+1(xj - xj+1) = Pj(t) (20)
There are n equations similar to equation (20). (See Chapter 3 for futher details).
Obviously other multi degree of freedom systems can be defined. In order to accom-
modate different types of structure the following general matrix equation will be

considered.

M

2R

+Cx+Kx = P(t) (21)

In equation (21) x is a vector (or column matrix) of the independent coordinates,

i.e. x = . (22)

X
n
L E

% and X are the corresponding velocity and acceleration vectors. The vector x may

contain linear and angular displacements. The vector P(t) lists the applied forces.

pl(t)
P, (%)

ice. P(t) = (23)
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X
n n
n
~~
-
"
X.
j+i
mj+]
i+l
c | ]
m.
K ]
j X
A - B j1
-1
A
kj_] L

Figure 6 Frame with n degrees of freedom, the only
permitted deformation is flexure of the

light vertical members in the plane of the
frame.
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A component of the force vector, Pj(t)’ is the resultant applied force on a mass
and acts in the direction of the displacement x‘j of that mass. The mass matrix M,
the damping matrix C and the stiffness matrix K are square and symmetric; K is

defined as

kll kl2 kl3 ....... vee klnw
k2l k22 k23 .......... k2n
K I N et etateas ettt (24)
knl an kn3 .......... knn
where k, =k .. This symmetry follows from the reciprocal theorem. For the

Js sJ
systems and coordinates defined in Figures 5 and 6 the mass matrices are diagonal

(i.e. ij = 0 for j # s and there is a single inertia term, typically mjj ij' in

each equation).

The significance of equation (21) must be stressed. Engineering structures are
usually complex and their response to specified inputs can be determined only by
approximate methods. Three general approximate methods are Rayleigh-Ritz, finite
elements and finite differences.

In these methods the actual structures are replaced by
approximate mathematical models, which are represented by equation (21). The mass,
stiffness and damping matrices are symmetric for models: from the Rayleigh-Ritz
method; from the finite element displacement method; and from the finite difference
method, if the recent energy formulation is used instead of conventional aifferences
based on the equations of motion. Thus solutions of equation (21) are applicable

to all linear, elastic structures.

Putting C = O and P = O in equation (21), the general equation for free undamped

vibration is:
MX+Kx = O (25)

For harmonic motion, xj = ¢j sin(wt + 8),j = 1,2, ... n where w is a natural
frequency and ¢j is the amplitude of vibration at the point where the displacement

x\j is measured. This leads to the frequency determinant
det [K - w™M ] = 0 (26)

In general, equation (26) gives n positive real roots for w?, say w

w % with w0 ?2<e?<w? ... <w?, Then w
n 1 2 3 n

2 2
lywz»“’B)

W_ e mn are the natural

1 Y20 Y3
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frequencies of the system. Corresponding to a frequency W there is a set of values

. th
of the amplitudes ¢. If ¢rj is the amplitude at the jth coordinate in the r

2

mode, substitution of W in the equations yields only relative, rather than absolute,

. i . This i -
values of ¢rj’ e.g. we can find ¢r2/¢rl’ ¢r3/¢r , ¢rn/¢rl his indeter

1Y
minacy can be removed by introducing the vector

z = ()0
a ~T
r

where ar is a scalar, such that

2 Mz o= 1 (27)
r ~ %r

Then the wectors Zr are normalized.

Standard computer programs give the eigenvalues wr from equation (26) and also the
corresponding eigenvectors, Er or z .- If equation (21) represents an approximate
mathematical model of a complex structure, then only the lower natural frequencies
from equation (26) will approximate reasonably the natural frequencies of the
structure. If the size of the matrix equation (21) is too large, the technique of
eigenvalue economisers or reduction can be used to reduce the order of the equations
without introducing serious errors into the values of the lower natural frequencies
determined from the reduced equations [1]}[2]. (See Chapters 3 and 4 for further
details).

5. Response

In this section we discuss some methods of determining the response of general
structures, defined by equation (21), to excitation. This discussion is in terms
of exciting forces, i.e. the vector P(t), but the methods can be adapted to yield
the response when support or foundatgon motion provides the excitation. The types
of excitation, i.e. harmonic, transient or random, to which the methods are

applicable, and the limitations of the methods will be summarised.

First we consider the normal mode method; this requires the natural frequencies g

‘and the normalized eigenvectors 2 to be known. The original matrix equation (21)

is transformed into a set of uncoupled equations by the change of variables

x = Zgq (28)

where ST, = (4,9, -.. g are principal coordinates and the normalized vector

n] 2
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Z. defined by equation (27), forms the rth column of Z. Provided that the damping

matrix C satisfies the relation
C = A M+ A K (29)

where Am and A, are constants, substituting equation (28) into (21) leads to

k
uncoupled equations in qr (Chapter 9) of the form:

n
@+ +r w?)§ +0?q = ) z_. P.(t) (30)
The solution of equation (30) can be found by analogy with the Duhamel integral (12)

for a general transient excitation and by simpler means for harmonic excitation.

In the general case

t
1 .
a = o f £ (1) exp [- v (t - 1)] sin w 4(t - ©)dr (31)
rd
o
where w = w (1 - 2)1/2 2w = X 4+ A aw?
rd r Ty ’ v T ' k r
n
- T
and fr(t) = jﬁl er Pj(t) ,

provided that the initial conditions are zero. Evaluation of the principal coord-
inate a, from equation (31) and use of the transformation (28) gives the response

xS at any coordinate. In practice, numerical integration of equation (31) will
usually be necessary. In general, the response from the higher modes (larger values

of r) is insignificant, and it is necessary to compute q_ only for a limited range
r g

of values of r, r =1, 2, 3, ... nl with nl < n. Unfortunately, no general rules
can be given for deciding upon nl; engineering judgement and trial computer runs
are required to establish nl for a specific problem. Improved convergence can be

obtained, i.e. the number of significant terms n, reduced, by the modal acceleration
technique, originally devised by Williams for structures such as beams. Applied

to equations (28) and (31), the response at coordinate s is

n

.. P (t

jzl : J( ) noz.g (bt
X, = —————— - ) o f £.(7) exp [~ v (t - )]
det |K| r=1 r
o
[ cosw (t-1)+ vy (1- z)_y2 sin w_ (t - 1)] d (32)
rd Yr Yr rd K B
dfr

where asj is a term in A, the adjoint matrix of K, fr(t) = I and it has been

assumed that Pj(O) =0, j=1,2, ... n.
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If the applied forces are harmonic, typically Pj(t) = Pj'cos (wt + Bj) at coordinate
j where Pj is a constant, the steady state response at coordinate s is found from

equation (28) and the direct solution of equation (30) as

n
. 2,2 os .
z [j§1 er Pj exp(lﬂj)} (wr w 21errm) exp(iwt)

— r=1 (w 2 = w?)% + 4 v *w 2w? (33)
r r

r
y
where i = (—l)/2 and Re signifies that the real part of the complete complex
solution is taken. For light damping there will be successive resonances when the

excitation frequency w equals in these circumstances the resonant

Wiy Wy, Woy wee
response for the lower modes is usually determined by the resonant term in series

2

(33) and depends upon frequency and damping as 1/2err . (It depends also upon the

terms in z, etc.)

For harmonic excitation hysteretic damping can be considered instead of viscous
damping. Hx/w replaces Cx in equation (21) where H is a symmetric matrix of hyster-~

etic damping constants and must satisfy the condition
H = a M+a K (34)

where ay and a, are constants, in order that transformation (28) yields uncoupled

equations. The response can be obtained from equation (33), if Zer is replaced by

urwr, where ur = ak + am/mr2 The resonant response now depends upon frequency and
damping as l/urwrz. In mathematical models of elastic structures internal damping

is often approximated by C = Xm K for viscous damping or H = a, K for hysteretic

k

damping. Then, as 2Yr = kar and ur = ak, and Xk and ak are constants, the frequency

dependence of the resonant response varies as mrg for viscous damping and mr_z for
hysteretic damping. Experimental evidence suggests that the latter behaviour is a

better approximation to real structures.

The uncoupling conditions, equations (29) and (34) for viscous and hysteretic damping
respectively, restrict the applications of the normal mode method. As discussed
later, methods exist which avoid this restriction. Some recent numerical evidence
[3] suggests that the restriction can be ignored. Mathematically, the equations in

g are uncoupled if ZT g§ (or gT @%) is a diagonal matrix. Response curves for sys—
tems which do not satisfy condition (29), i.e. systems for which ZT CZ is not diag-
onal, agree wery closely with approximate curves, obtained by the normal mode method

with the non-diagonal terms in ZTQZ neglected.

ThHernormalymodenmethodimaynbenusedntol determine the response to random excitation.
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The spectral densities of response Sx(w) and force Sp(w) are related by
S (w) = | H_ .{(w)]? s (w) (35)
X SJ p

vhere Hsj(m) is the complex frequency response or receptance, i.e. Hsj(m) exp(iwt)
is the response at coordinate s to a force exp(iwt) at coordinate j. [Equation
(18) for a single degree of freedom system is a special case of equation (35).]

rom equation (33)

[ z z (w ? - w? - 2iy 0w w) }
rs ‘rj r rr
l 2

2y 2 2 2 2
w - w + 4 w w
(o, ) Y.

r

for viscous damping and urmr replaces 2er to obtain Hsj(w) for hysteretic damping.

From equations (17) and (35) the mean square value of the response is given by

o0

<x A(t) > = f H (0)]2 S (w) do (37)
s 2w sJ p
o
Approximations are often made when evaluating equation (37). If (Ar + iBP) is a

typical complex term in the series (36) for Hsj(w), products Ar Aq and Br Bq, r £ q,

are neglected in comparison with A; and Bi respectively. Then

2 2

n Zos” Zps

[ H ()2 = ] J (38)

sJ
r=1 (w 2 - w?)? 4+ 4Yr2wr2w2

if Sp(w) varies slowly, it is replaced by the value Sp(mr) when the rth term is
considered. Then, from equations (37) and (38), and by analogy with equations (17)
to (19),

2

n S(w) z 222
B p'r’ “rs ‘rj

< xsz(t) > (39)

r=1 8 Yr mr
[For hysteretic damping ur replaces 2Yr'] Equation (39) is a reasonable approxi-
mation, provided that damping is light, Sp(m) varies slowly in the vicinity of each
resonant frequency and the natural frequencies 0 are not too close together. For

large structures the last condition will usually be the most difficult to satisfy.

The essence of the normal mode method is that it gives the response in terms of
contributions from the undamped normal modes. There exist also methods, which avoid
restriction (29) on the damping matrix and give the response in terms of damped
modes. These methods are more complicated, algebraically and in concept, than the

standard normal _mode method and will not be considered here.
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The frequency response method can be used to determine the steady state response
to harmonic excitation; it imposes no restriction on the damping matrix, gives the
response in closed form, instead of a series, but requires the inversion of a com-
plex matrix of order n x n at each frequency for which the response is required. If
the force at j is Pj cos(wt + Bj)' the excitation vector, g(t) in equation (21), is
written P exp(iwt), where a typical term in P is Pj exp(iﬁj), % = iwx and g = —w2x

are used in equation (21), and the response is given by

x = Re [ J7F P explint)] (40)
where J = K- w?M + iw C for viscous damping
and J = K- w?M + i H for hysteretic damping.

Many methods exist for the numerical integration of the general dynamic equation (21)
(Chapter 9). In these, assumptions are made about the variation of either the dis-
placements or accelerations during small time intervals; e.g. it may be assumed

that during a small interval the displacement is a cubic function of time or that

the acceleration varies linearly with time. With these assumptions the set of n
second order differential equations (21) is replaced, in general by n simultaneous
equations. The solution of the latter gives the displacements at the end of the
short time step for known conditions at the beginning. Successive applications of
this procedure give the response of the structure. Numerical stability of the comp-
utations and accuracy have to be considered. For some of the methods the time inter-
val must be less than a certain value, given in terms of the period of the nth or
highest mode of the system, if numerical stability is to be achieved. A criterion
for accuracy is usually formulated in terms of At/Tj, where At is the time step and
Tj is the period of the highest mode making a significant contribution to the response
For example, from the survey of numerical integration methods by Bathe and Wilson[4]
engineering accuracy is achieved with the Newmark B method if At/Tj < 0.1. The
methods can be used with any prescribed excitation vector E(t) and there is no

restriction on the form of the damping matrix.

Equation (21) is limited to elastic structures, where linear relations between
forces and displacements exist. The normal mode method uses the principle of super-
position and is applicable only to linear systems. In practice, the response of
structures, when some components are stressed beyond the elastic range, is of
interest, e.g. the response to earthquakes. Methods of numerical integration can
be used to predict the response of non-linear systems, although the criteria for

numerical stability and accuracy become more stringent.
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3. Dynamic Interaction Problems

In the previous section methods of determining the response of structures have been
outlined. These methods are satisfactory, if the exciting forces are known, and can
be extended to deal with the excitation by known displacements or accelerations of
the foundation. The excitation may be transient or aperiodic, harmonic or random.
However, there exists a growing class of important dynamic problems, where the
excitation mechanism is affected by the properties of the surrounding or underlying
medium. Thus a proper determination of structural response requires some dynamic
analysis of the medium. Broadly there are two types, interaction between ground
and structure and between fluid and structure. The former occurs when determining
the response of structures to earthquakes, as the known input may be the acceler-
ation of the underlying bedrock or of the free surface of the ground, i.e. without
the structure present. It occurs also when the source of excitation is located in
one structure and the response of neighbouring structures is required. The latter
occurs when the coupled vibrations of water and dams, piers or off-shore structures
are considered. Indeed, both types of interaction may have to be considered, if,
for example, the response of a dam to an earthquake is required. When aerodynamic
effects are included, wind-induced oscillations of structures exhibit interaction

effects.

Considering an elastic structure mounted on a rigid foundation, which is supported
by soil, we require the structural response when the free-field acceleration at the
ground surface is prescribed. Let §s be the vector of displacements of the con-
strained structure, i.e. the structure with the foundation clamped. [ For example,

for the shear building of Figure 6 X consists of the horizontal displacements

xl, x2, e xn of the masses ml, m2, . mn.] Let Ms’ 95 and Es be the mass,
damping, and stiffness matrices of the constrained structure. Vector Xp lists the
displacements of the foundation; [if the foundation EF in Figure 6 undergoes hori-
zontal translation Xo and rocking 6, xF consists of xo and 6]; vector x lists the
displacements of the structure foundation system,

<s

i.e. X = |e—————— (41)
~F

Using matrices with subscripts F for the foundation and with no subscripts for the

complete system, equation (21) represents the complete system and can be partitioned

as

1 b4 1l

%s : %sF fs ~S : gsF ~S
! '

______ ————— —_ + ———————e P
1 1

ur | ct .

~sF g ~F ~F ~sF . ~F ~F
1 I
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)
K ¢ K o
~s ! ~sF 55 2
------- Fm—m _—_ = - (42)
T H
Rer LSF Xp Pr

assuming that there are no applied forces on the structure and excitation is caused
by the forces gF on the foundation due to the ground. If the free field displacement
of the ground is Y the interaction (or dynamic magnification) vector for the found-
ation, (fF - X)’ is related to the interaction forces, or forces on the ground due

to the foundation, - EF by

- = - X_ - 3 4
Pp Ky Dxp - y) +Cq [%p - 3] /w (43)
The matrices KG and CG can be found analytically for simple geometries, or by the
finite element method or experimentally. Equation (43) refers to steady state
vibrations of frequency w; in general KG and CG are dependent upon w. [The analyt-

ical solutions and approximate forms of KG and CG/m, which are independent of w, are
discussed by Richart, Hall and Woods [5].] Substituting from equation (43) in (42)

and rearranging terms,

MX+C* %+ Kt x = Px (44)
r ! 1 '
93 ; E:«SF }Ss : ISSF
1
where C*¥ = | e A K*¥ = | —em L,
~ | ~ 1
T I T X
Cor ! Cp+Ce/® Rer . KptKe
1

If KG and CG/m can be treated as independent of frequency, the response x can be
found by solving equation (44) by standard methods for any freee-field motion. If
KG and CG/w depend upon w, Fourier transforms are used to obtain a solution. For

P*(t) known, its Fourier transform P*(w) is given by

P*(w) = J P*(t) exp(- iwt) dt (45)

[}

Similarly, the Fourier transform of x(t) is defined as
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g(m) = j f(t) exp(~ iwt) dt (46)

-

Thus, taking the Fourier transform of equation (44),
(- 02 M + iw C* + K*) x(w) = P*(w) (47)

Equation (47) is solved for x(®) and the inverse transform used to determine the

response x(t),

©

ie. t) = L [ Ew) expivt) a (48)

In practice, the response vector f(t) is obtained from %(m), and also E*(w) from
g*(t), using the fast Fourier transform (FFT) algorithm. The latter is highly
efficient [6], but requires g(w) to be evaluated from equation (47) for a large
number of discrete frequencies. This requires considerable computation for a com-
plex structure for which the order of the matrices in equation (47) is high. For
earthquakes and other practical excitations the response is usually confined to the
first few modes. Methods of economizing in computation by taking advantage of the

low-frequency nature of this response have been developed [7118]-

Neglecting the dynamic interaction effects would cause considerable simplification.

Then the foundation is assumed to have the prescribed free-field motion, i.e. §F
y- Using this in equation (42), expanding that equation above the partition and re-
arranging terms, an equation of the standard form of equation (21), i.e. with matrices
independent of frequency, is obtained. However, for multi-storey structures and
certain values of the parameters this assumption leads to gross underestimates of

the foundation vibrations [7].

The vector fs in equation (41) consists of absolute displacements. However, for
particular systems the equations are often formulated in terms of relative displace-
ments (e.g. if the foundation EF in Figure 6 has displacements X and 6 , the rela-
tive displacement of mass mj at heightlﬁ is z, = Xj - %X, - h.8). In this case the
excitation vector E* in equation (44) is conveniently expressed in terms of g, the

free-field acceleration vector, instead of in terms of y and y.

Consider a dam subjected to a prescribed horizontal acceleration of its base ﬁg(t)
as an example of fluid-structure interaction. If this interaction is neglected, it
is assumed that the face of the dam has the acceleration ﬁg(t) when determining the

dynamic pressure distribution on the dam due to the water; then the vibrations of
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the dam are determined for the combined loading of base acceleration and dynamic
pressure distribution. If, further, the water is assumed to be incompressible, the
dynamic pressure distribution is determined directly in terms of ﬁg(t) and analysis
leads to the standard matrix equation (21). If the water is considered to be
compressible, the analysis of the pressure distribution is in terms of an excitation
frequency w. Thus, using equations similar to (45) to (48), g(m) can be found for
an excitation ﬁg(w) and the response of the dam f(t) found by the inverse Fourier
transform. Allowing for fluid-structure interaction results in a modified mass
matrix, where the additional terms are frequency dependent (unless the water is
assumed to be incompressible). For a dam-reservoir system subjected to a specific
earthquake acceleration Chopra [9][10] showed that significant errors in the maxi-
mum dynamic response can be caused by neglecting dynamic interaction or by assuming
water to be incompressible; these errors depend upon the fundamental periods of
the dam and reservoir, T and TRl respectively, and are small for TDl/T > 1.4.

D1 R1
(Other fluid-structure interaction problems are considered in Chapters 13 and 17).

For the problems of this section and for similar problems the structure and ground
or fluid are treated as separate sub-structures and appropriate continuity conditions
at the interface imposed to obtain the response of the complete system. This allows
different methods of analysis to be used for the two parts of the system, e.g. the
finite element method for the structure and an analytical solution for the ground

or fluid. Even if the finite element method is used for both parts, the use of the

sub-structure approach has computational advantages.
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CHAPTER 2

FREE VIBRATION, RESONANCE AND DAMPING
by

R.R. Wilson

1. Introduction

In this chapter we shall examine the dynamic behaviour of a one degree of freedom
system, introducing the terms and techniques which will be used in the later
chapters. The equations of motion for a number of systems are derived. Then the
behaviour of an undamped and a damped system are considered. Free vibration,
response to sinusoidal forcing and finally the transient behaviour in response to

general forcing are calculated.

First of all, what is a one degree of freedom system ? At its simplest, it is a
system as shown in Fig. 1 consisting of a mass m suspended from a spring k. If
the weight of the spring can be neglected then the system is completely determined

by the position of the mass.

In general a one degree of freedom system can be specified by giving the value at
every instant of time of only one coordinate. This coordinate often is a displace-
ment, as in the spring-mass system, but it can equally well be the angle through
which the bob of a pendulum swings or a shaft rotates as it undergoes torsional

vibration.

For complicated systems, many coordinates are required to give an adequate rep-
resentation. However, as will be discussed in Chapter 3, it is possible to intro-
duce a set of generalized coordinates which are uncoupled. The behaviour of each
coordinate can then be examined in turn using the methods described in the present

chapter.

In the next six sections the equations of motion of different systems will be
formulated. It will be shown that all the equations are of the same form, and
thus it is necessary to consider the solution of only one equation when examining

the vibration of any one degree of freedom system.

2. Spring-Mass System

Consider the system shown in Fig. 2 consisting of a mass m hanging on a spring k.
When the mass is at rest, the system is in equilibrium, and the force in the spring

is equal to the weight of the mass. The spring force is given by the product of
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Figure 1. Spring-Mass System
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Figure 2 Displacement of a Mass on Spring
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the spring stiffness k and the static deflection X Thus, taking the positive

direction as downwards, we have
-kx +mg = O (1)

If the mass is now displaced a further distance x then the spring force increases

and there will be a net restoring force given by
P = - k(x_+x) +mg , (2)

and hence from equation (1),

P = - kx . (3)
By Newton's 3rd Law, this will produce an acceleration given by

X =

% , (4)
where a dot over the x denotes differentiation with respect to time.
Combining equations (3) and (4),

X = —= (5)
and the equation of motion of the system is given by

mxX +kx = O (8)

3. Simple Pendulum

When the pendulum of length % as shown in Figure 3 is displaced through an angle
8, a component of the weight of the mass m will act so as to restore the pendulum

to its equilibrium position. This force is given by

P = - mg cos(n/2 - 8)

i.e. P = - mg sin 8 (7)
For small angles, sin & *+ @ and so the restoring force is given approximately by
P = —mg ® (8)

ave the equation of motion
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ie. L 8 +g6 = O (9)

4. Beam with Central Load

If a force P is applied at the centre of a simply supported beam then, if the

weight of the beam is neglected, the static deflection is given by

s ~  48EI (10)

where & is the length of the beam, I is its second moment of area and E is Young's

modulus. Thus the effective stiffness of the beam is given by

P 48EI
k = — = =3= , (11)
s

When a mass m is placed at the centre of the beam, then the resulting deflection

is given by equation (10) with P = mg. If the mass is now displaced a further

4,
distance x then a restoring force - iEI x will be produced causing the mass to

accelerate towards its equilibrium position. Thus the equation of motion is

48EI

ST
. 4
i.e. m X + —%%l Xx = 0 (12)

5. Rolling of a Ship

When a ship is floating in still water, the weight mg and the buoyancy force B are
equal and both act through the centre of gravity of the ship, point G. When the
ship is displaced slightly, the buoyancy force no longer acts through G but through
M, the metacentre. The position of M is determined by the geometry of the ship.

If M lies below G then a couple will result which will act so as to increase the
displacement, capsizing the ship. Let us assume that M is a distance h above G

(h is termed the metacentric height). Then a restoring couple -mg h sin ¢ is
produced, and for small angles, this couple has the approximate value -mg h 6.

Thus the equation of motion of the ship is given by

L § = -mgho,

ice. I) §+mghe = 0 , (13)

where Il is the moment of inertia of the ship about its longitudinal axis.
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Figure 4 Beam with Central Load

(a) equilibrium position (p) displaced position

Figure 5 Rolling of a Ship
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6. Springs in Parallel

In the system shown in Figure 6, the weight of mass m is balanced by the force in
two springs ka and kb. Thus if the mass is displaced a distance x from its

equilibrium position we have that a restoring force P is produced given by

P:-kax—kbx

i.e. ‘P = —(ka + kb)x (14)

Thus the equation of motion of the system is given by

. (ka + kb)x
X = -
m
i.e. mX + (ka + kb)x = 0 (15)

This equation may be written in the same form as the equation of the simple spring

-mass system,

m X + ke x = 0, (16)
where the two springs have been replaced by a single spring with equivalent stiff-
ness keq given by

k = k +k (17)

7. Springs in Series

In the system shown in Figure 7 the force in each of the two springs is equal, and

if xa and xb are extensions of the two springs then the restoring force is given

by

P = -kx = - k x (18)
a

. P P
i.e. X = - -5 (19)

m X + ke x = 0 (20)
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P 1 X
k = - = or +—— = -=
eq X k P
eq
1 1 1
N —_— = = 4y = 21
*hus = © tk (21)
eq a b
3. Free Vibration

Tor all the systems considered, the form of the equation of motion is the same as

or the simple spring-mass system,
mx +kx = 0 (22)

The solution of this equation can be used to predict the behaviour of any of the
systems considered. Equation (22) represents simple harmonic motion and thus its

solution may be written in the form
X = Acoswt+ Bsinowt (23)
n n

Substituting in equation (22) we have that

2

m{-w
( n

1]
o

Acos wt-w?2Bsinuwt) + k(A cos w t + B sin w_t)
n n n n n

w o= /%_ (24)

This constant w, (rad/sec) is the natural frequency of the system. The displace-
ment is the sum of two sinusoidal functions which vary at a frequency w . The
amplitudes of these functions are determined by the initial conditions. If at

time t = O, the mass has displacement Xy and velocity *i then

X,

A = x. and B = N
i w
n
and the displacement at any time is given by
X,
X = x, cos w t + — sin w t (25)
i n w, n

This may be written in terms of a single sinusoidal function

sin (w t + a)
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and tan o =

e

A' is the amplitude of the vibration and a the phase angle . The displacement of
the mass will vary as shown in Figure 8. It can be seen from equation (25) that

the time between successive peaks is given by

wT = 2=
n
je. T = 28 (26)
w
n

T represents the period of the vibrations, and the number of periods per second

is called the frequency f in hertz or cycles per second. Thus

w
1 n 1
f=¥=§;=5;/§ (27)

9. Energy of Vibrating System

Consider the mass to be given an initial displacement X, and released so that its

initial velocity is zero, then from equation (25),
X = x, cos wt,
i n

and x

- w x, sin o_t (28)
n i n

Thus the maximum displacement is X, and the maximum velocity w X When the mass
is at its position of maximum displacement the potential energy V of the spring is
given by

V = %kx? (29)

As the mass moves from its position of maximum displacement to its equilibrium
position, the potential energy stored in the spring decreases and the kinetic

energy of the mass increases. At the equilibrium position the potential energy

of the spring is zero and the kinetic energy of the mass is given by

T =

% m(x,)?
i’ max

w ? x, (30)
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Thus, by conservation of energy,

2
Ymw? x? = %kx
n i

i.e. w = /A; , (31)
n m

agreeing with equation (24).

The vibration of the system corresponds to a repeated transfer from potential
energy of the spring to kinetic energy of the mass. In practice this process

would not continue indefinitely - energy would be lost from the system, dissipated
in the form of heat in the spring, transferred to the supporting structure or lost
by friction of the air. These losses of energy are collectively termed the damping

of the system.

10. Damped Free Vibration

As mentioned in the previous section, a system may lose energy by many mechanisms.
In the present chapter we shall consider only the situation in which motion is
resisted by a force proportional to velocity. This is viscous damping and may be
represented by the motion of a piston in the dashpot with the motion resisted by
the viscosity of the oil, as shown in Figure 9. An additional restoring force

- ¢ x is introduced. The equation of motion is given by
mX = -kx-c¢x
i.e. mX+cx+kx = O (32)

For an equation of this type a solution of the form x = e>‘t can be used.

Substituting in equation (32) gives

i.e mAiA +cx+k = 0
c c |? k
= - = % = -z
A 2m {Zm m (33)
The general solution is given by
At ALt

x = Ae + B , (34)
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where the values of Xl and XZ are found by taking the positive and negative signs
in expression (33). A and B are constants whose values are determined by the

initial conditions.

It is useful to consider separately the situations arising when the expression
under the root sign in equation (33) is positive, zero or negative. When (%a)2>
% , the expression under the root sign is positive and the system is said to be
overdamped . The displacement decays from its initial value towards zero without
any vibrations; the motion is the sum of two exponential decays as given in

equation (34), both values of X being negative.

The value of the damping constant c¢ which corresponds to the expression under the

root sign being zero is called the critical damping and is given by

i.e. ¢ = 2m /4% = 2/mk = 2 me (35)

For this value of damping, the two roots of equation (33) are equal and the dis-

placement decays exponentially.

When (%a)z <§ , the system is underdamped. Equation (33) can be rewritten in the
form
Vo=~ tiw (36)
2m d

k c
%9 T/ m " (Zm) -(37)
CZ
teew g = oV 1 -7k
The general solution is given by
c . [¢] .
(- om + 1wd)t (- o 1wd)t
Xx = Ae + B e
c
- =t iw .t -w ti
ie. x = e W (A e 4 ,pe ¢ ) (38)
This can be rewritten in the form
= %_ t
X = e m (A' cos wdt + B' sin mdt), (38a)
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or evaluating A' and B' in terms of the initial conditions

i 2
X = e (x, cos w .t + 2 sin w,t) (39)
i d w d
d
The displacement varies as shown in Figure 11 in the form of a damped sine wave.
The time between successive maxima is determined by the period of the system 2w/wd.

The ratio of the height of successive maxima is given by

- =t - 5= (t + %ﬂ) mw
e / e d = e

This ratio represents how quickly the vibration dies away and the logarithm of
this quantity, the logarithmic decrement § is often used as a measure of the

damping of the system. It is given by

(¢}
=

§ = < ° (40)

3
€
=}

11. Undamped Forced Response

All the systems considered so far have been undergoing free vibration. There have
been no external forces applied. We shall now examine the behaviour of a mass-
spring system which has a sinusoidally varying force applied to the mass as shown

in Figure 12. The equation of motion is
mX + kx = P sin wt (41)
where P is the amplitude of the force and w is the frequency at which it varies.

The solution of this equation is the sum of two parts, the particular integral and
the complementary function. The complementary function represents the general
solution of the corresponding equation with the right hand side set to zero. 1In
this case this is equation (22). The particular integral is any function satisfying

the complete equation. It is reasonable to try a solution of the form

X = A sin wt (42)
.- mw? A sin wt + kA sin wt = P sin wt
i.e A = P
cer Tk e

Thus, a particular integral of the equation is
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P .
X = k—-mr sin wt , (43)

and the complete solution is obtained by adding this to the general solution of
equation (22) giving
*i
X = X, cos wt+—sinwt +
i n w n

k*—pnﬁz_ sin wt (44)

If initially the mass is at rest at its equilibrium position then X, = ii = 0, and

the solution is given by equation (43). This can be written in the form

X = ——E/k sin wt
1- E w?
i.e. x = ——ELEE—— sin wt (45)
1 - (=)
w
n

Now P/k represents the static deflection X, of the mass. Thus the system undergoes

vibrations with amplitude x lw
1= (—)*
w
1 n
The factor — is called the dynamic magnification factor and its value
W _\2
depends L= (m ) on how near the frequency of the applied force is to the

natural frequency of the system. As the ratio w/wn approaches unity the vibration

amplitude increases and the system is said to be at resonance.

12. Damped Force Response

In practice the amplitude of the vibration of a forced system is determined at
resonance by the damping of the system. It is thus necessary to consider the
system as shown in Figure 14. The equation of motion is

mX+cX+kx = P sin wt (46)
Again the complete solution consists of a particular integral and a complementary
function. The complementary function corresponds to the general solution of
equation (32). For a particular integral let us try a solution of the form

x = A sin wt + B cos wt (47)

Substituting in equation (46) gives
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- mA w? sin wt - mB w? cos wt + cA w cos wt

~ wBc sin wt + Ak sin wt + Bk cos wt = P sin wt

Equating coefficients of sin wt and cos wt we have

2

-~ mA w® - w cB + KA =
and - mB w? + cA w + kB =
These equations can be solved to give
A = P(k — mw?)
(k - mw?)? + w?c?
(48)
and B = = Puc

2,2

(k - mw?2)? + w?c
The particular integral given by substituting equations (48) into (47) can be
combined with the complementary function as given in equation (38a) to give the

general solution

-
2
X = e m (A' cos mdt + B' sin wdt)
P(k -~ mw? P
+ (k = mo?) sin wt - we cos wt (49)
(k ~ mw?)? + w?c? (k - mw?2)? + w2c?

where A' and B' are evaluated from the initial conditions. Because of the factor
-c/2 . . .
e c/2m t, the first term, called the transient component , will die away, and the

displacement will be determined after a sufficiently long time by the second and

third terms, the steady state components . The steady state displacement is given
by
X = Plk - mo?) sin wt Puc cos wt
T (k- mw?)? + w?c? T (k - mw?)? ¢ wlc?

i.e. X = P sin(wt - a) (50)

J(k - mw?)? + wic?

where tan o = —=2C (51)

k — mw?

The amplitude of the steady state response can be written in the form
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1
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o

The static deflection P/k is multiplied by the dynamic magnification factor

1

J{l —[g]z)z + wic?

n k?

This factor varies with the ratio of Lu/wrl and the value of damping, as shown in
Figure 15. The frequency for which the value of the dynamic magnification factor
is largest, corresponding to the maximum steady state vibration amplitude, is
given by

w = W 1 - —/— ‘ (52)

13. Undamped Transient Vibration

Consider the situation when the applied force varies arbitrarily with time as
shown in Figure 16. The force is applied at time t = O and we wish to calculate

the displacement at time t = t The equation of motion is given by

1
mX+ kx = f£(t) (53)

In a small time interval dt, the mass receives an impulse fdt. Because of this

impulse the mass gains momentum given by
mdx = fdt (54)

From equation (25), the displacement at a time t after an initial velocity of %

1
has been given to a mass is
ii
X = — sinow t
w n
n
Thus, the contribution to the displacement of the mass at a time 1 after it has
been given a velocity dx is
dx = dx sin w1
W n
n
i.e. dx = fdt sin w_ T . (55)
mw n

The total displacement of the mass at time tl due to application of the force is

the sum of all the contributions during time intervals dt at times t(= tl -t)
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for all values of t < tl. Hence

1
x(tl) = J sin mn(tl - t)dt (56)
0

If at t = O, the mass has displacement xi and velocity *i then the displacement is

i
- — gi i - 57
X(tl) = X. COs W tl + sin w tl + J sin w (tl t)dt ( )

As an example of an application of this equation, consider the situation when a
constant force P is suddenly applied to the mass which is initially at rest in its

equilibrium position then
t

1 P
X(tl) = j —— sin wn(tl - t)dt
o n
i (t,) = —— (1 t) (58)
i.e. x(t, = T3 - cos w t,
n
The maximum displacement is
2P 2P
*nax " mmnz Tk (59)

Hence the maximum displacement produced when the force is applied suddenly is

twice the static displacement caused by the same force.

14. Damped Transient Vibration

The case of time varying force applied to a damped system can be treated as in the

previous section. The equation of motion is
mX+ckx+kx = f(t) (60)
From equation (39), an initial velocity of ii results in a displacement given by
i
X = e — sin w.t
d
“a

Hence the contribution to the displacement after a time 1, given by the application

of the force during the interval dt, is

c
dx = e 2m ' fdt sin w, T, (61)
me 4 d




and the total contribution to the displacement at time tl from the applied force

s o) e(t) - 5=t -t)
x(t,) = sin w, (t,-t)dt (62)
1 mw d 1
° d
The complete displacement is
c . ox,
- =t X, + 5
2m i 2m .
x(tl) = e (x1 cos mdtl + oy sin wdtl)
t
1 c
+ £ o =55 (578 ginw (t,-t)dt (63)
me 4 d 1
[
15. Summary of Results
k
Undamped natural frequency wn = o
C2
Damped natural frequency wn = wn 1 e
CZ
Frequency of maximum response for forced vibration w =W 1 - =—
max n 2mk
Critical damping ¢, = 2 /mk
\
. . c
Logarithmic decrement § = —
mw
d
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CHAPTER 3

VIBRATIONS OF MULTI-DEGREE OF FREEDOM SYSTEMS
by

J. Wilson

1. Introduction

In Chapter 2, the vibration of a single degree of freedom system was studied. This
is the simplest structural system. Actual structures are, of course, not as simple
as this. They behave as lightly damped multi-degree of freedom systems. However,
we can apply much from our study of single-degree of freedom systems to multi-

degree of freedom systems (or real structures).

For instance a single degree of freedom system has a single natural frequency.
(Real structures have many, only a few of which are important in general). A single
degree of freedom system resonates when excited by a sinusoidal, time varying force
having a frequency near the natural frequency of the system. The effect of light
damping is to reduce the amplitude of the resonance at the natural frequency from
infinity to a large but finite value. (Real structures resonate near each of their
natural frequencies, the magnitude of the resonant oscillation depending on the
amount of damping present in the structure). Thus in order to study the behaviour

of real structures we must first look at multi-degree of freedom systems.

The simplest multi-degree of freedom system is the 2-degree of freedom system. We
shall find that this system has two natural frequencies and associated with each
natural frequency a mode shape defining the relative amplitudes of vibration of the
two masses which constitute the system. Then we shall go on to a multi-degree of
freedom system with n degrees of freedom. We shall find that there exist n natural
frequencies each associated with its own mode shape. 8o in order to define the

vibrations we must specify not only the natural frequency but also the mode shape.

We also find that the mode shapes exhibit a property known as orthogonality. This
property enables us to simplify the analysis of the behaviour of multi-degree
freedom systems which are representative of our real structures. If we express
the displacements of a multi-degree structural system in terms of the mode shapes
as coordinates, then we can transform a set of n coupled equations into a set of n

uncoupled equations each of which can be solved independently of the other.
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2. Free Vibrations of 2-degree of Freedom System

A two-degree-of-freedom system is represented as shown in Figure 1 by two masses
and two springs. It is assumed that the masses can only move in the x direction.

We denote the displacement of the first mass, m from its static equilibrium

l,
1 and similarly for my and u- These two displacements completely

define the state (or position) of the system.

position by u

We write down the equations of motion for m, for any displaced position u, and Uy
m, U, = _klul+ k2(u2 - ul) (1a)
Similarly for mys
m, U, = —kz(u2 - ul) (1b)
Rearranging equations (la) and (1b) we obtain
m U+ (kl + k2)u1 - k2u2 = 0 (2a)
m, U, + k2u2 - k2u1 = 0 (2b)
We can write equations (2a) and (2b) in matrix form as
my 0 ul + kl+k2 ~k2
0 m, U, —k2 k2 (2c)
or M {j + K U = [0]
(2x2) (2x1) (2x2) (2x1) (2x1) (24d)
where K is the stiffness matrix
(2x2)
M is the mass matrix
(2x2)
U is the vector of displacements
(2x1)

Note that this

is similar to the equation for a single degree of freedom system

(2e)



47

Let us assume that a solution to equations (2a) and (2b) is of the form

iwt
W = a e (3a)

iwt
u, = aje (3b)

where a; and a, are constants and w is the natural frequency. (By using the
expression

eimt = cos wt + i sin wt
we can represent any sinusoidal wave composed of cosines or sines by separating

real and imaginary parts). On substitution of equations (3) in (2a) and (2b) we

obtain
{- mlmzal + (kl+k2)a1 - k2a2} eth = 0
{- mzwza2 + k2a2 - kgal} eiwt = 0
On simplifying these become
{ (ky+k,) ~ w?m} a, -~ k,a, = 0
- kZal + (k2~w2m2)a2 = 0 (4)

the solution to which must be true for arbitrary values of a; and a,. (Obviously

one possible solution is that a; =a, = 0 but this would give no motion at all).

If we divide through by a, we obtain equations in terms of the ratio a2/al and w?.

o

{ (k +ky) - w2m} -~ k,

I—‘m IF\J‘D l—‘m if\)

- k2 + (kz—u)zmz) - 0 (5)

We can eliminate a2/al between these equations and obtain,

{ (kl+k2) wim b (ky-w?my) ~ k2 0
or multiplying out
W _ 2 -
m, myw {mlk2 + m2(k1+k2)} w? o+ k1k2 = 0 (6)

This type of equation always has two solutions wl2 and mzz which are positive and

such that wl and Wy are the two natural frequencies of the system. If we now go

back to equations (5) and substitute for (2 by “12 or wzz we will find two
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different ratios for a2/a1 corresponding to each natural frequency. These ratios

are the mode shapes.

Example 1

Suppose m1 =m, = 1 and k., = k., = 1 in consistent units. Equation (6) gives

€
1]
it

w = 0.618 rad/sec; w, = 1.62 rad/sec.

0y is known as the fundamental (lowest) natural frequency.

Substituting for w by w = w = 0.618 and w = w, = 1.62 in either of the

1 2
expressions (5) gives
a
(;2—) - 2—3—;—3-/—5 - 1.62
11
a
(=2) = 2—3;'/5 = -0.62
12

What does all this algebra mean? It shows that for a two-degree of freedom system
there exist two natural modes of vibration (not necessarily distinct) such that for
each frequency the displacements u, and u, are in phase and there is a constant
ratio between the displacements. The ratio of these displacements is the mode

shape.

We can write the equations (4) in matrix form as

2 o
(k1+k2)—w m —k2 a, = 0
2
—k2 k2—w m2 a2 6]
or 1
- — 2 .
kl+k2 k2 al ® m, 0 al = 0
-k2 k2 a, 0 m a, 0
J
or ( K - w? M ) A = 0 (7)

(2x2) (2x2) (2x1) (2;1)
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where K is the stiffness matrix
(2x2)
M is the mass matrix
(2x2)
é is a vector of amplitudes
(2x1)

Notice the similarity between (7), a set of equations in matrix form, and the

frequency equation for a single degree of freedom system,

(k - w %m)a = O
n

ivin w 2 -k

g1 g n -
/K
or w = =
n m

3. Free Vibrations of a Multi-Degree of Freedom System

Consider now a multi-degree of freedom system consisting of n discrete masses
constrained to move only in the x direction and connected by elastic springs
(Fig. 2).

If we write down the equations of motion for the n masses, we end up with n-2

equations of the type,

mU, = k, . (u, -u,) - k.(u,- u. j = 2, n-1 8a
3% 541 Y501 J) J( § J—l)’ J , (8a)

m U, = k2(u2— ul) - klul (8b)
and mu = —kn(un— un—l) (8c)

We can rearrange these equations in the form

m o+ (k1+ kz)ul - kyu, = 0
mu, + (k.+ k, Ju, —k.u, . -k, _u, = 0 9
JJ (J J+1°73 J i1 J+lg+1 (©)
mi +ku -ku = 0
nn nn n n-1
As before we assume a solution of the type uj = ajel(‘ut where a, are constants.

Note that w and the phase is the same for all displacements. The equations (9)
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(K - w2 M ) A = o] (10)
(nxn) (nxn) (nx1) (nx1)
where K is the stiffness matrix, M is the mass matrix and é is
(nxn) (nxn) (nx1)

the vector of displacement amplitudes. For example, when n = 5, the stiffness

matrix, E , becomes
(5x5)
r 9
kl+k2 —k2 0 0 0
—k2 k2+k3 -k3 0 0
0 —k3 k3+k4 —k4 0
9] 0 —k4 k4+k5 —k5
0 0 0 —k5 k5 ]
and the mass matrix, M
(5;5)
[ m, 0 0 0 0 W
0 m, ¢} 0 0
o} 0 my 0 0
0 0 0 m, 0
i 0 0 0 0 mg |

Equation (10) is of the same general form as equation (7) except that the matrices

are of order n instead of 2. It is known as the eigenvalue equation. It turns out
that n values of wz(mlz, mzz,... mrz"' mnz) will satisfy this equation corres-

ponding to n natural frequencies. The roots mrz always turn out to be positive

and real.

Note that the matrix 5 is always square (order n) and is symmetric, i.e. if
(nxn)

we swap rows and columns the matrix is unchanged. This is true for all linear

elastic structural systems. The mass matrix is also square (order n) and symmetric,

but need not necessarily be diagonal as shown in this case.

Corresponding to each of the n values of w, we find on substituting in each of

egquations(10)that we,cangobtainza,set of simultaneous equations from which it is

possible to find the ratios a_ :a

1r 2r: "':an—lr:anr' This set of ratios represents
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the mode shape associated with the rth frequency.

Thus from equation (10) we can find the natural frequencies and mode shapes of a
discrete multi-degree of freedom elastic structural system. You might well ask
what is the use of this if our structure is continuous, as say a uniform canti-
lever beam. For such a simple structure, analytical methods of determining the
natural frequencies may be used. However, in general, it will not be possible to
find an analytical solution for a continuous structure of rather more complex
nature. Thus what we do is idealize the structure in some way by a discretization
process, reducing the number of degrees of freedom from infinity to n where n is as

large a number as we like.

Let us consider the case of the mode shapes of a uniform cantilever beam (Fig. 3).
If we replaced the cantilever by 4 masses, connected by four light beams, we might
find the mode shapes as in Figure 4. These are fairly close to -the actual

mode shapes and we can make good approximations by drawing a curve between the
discrete values. Obviously for higher frequencies it becomes much more difficult
to define mode shapes unless we increase the number of points which we take to

define the mode shapes (i.e. increase the number of degrees of freedom).

4, Orthogonality of Mode Shapes

Let us take a discretized structure vibrating in its rth mode shape

?r = {alP TN ajr TR anr}
(nx1)
and put this in place of A in equation (10). (Since A is arbitrary we can do this).

The frequency of vibration will of course be mr, so that equation (10) becomes

(K -w? M ) ¢ = 0
~ r ~ ir <
(nxn) (nxn) (nx1) (nx1)

which we can write as

S R N (112)
(nxn) (nx1) (mxn) (nx1)

For the same system vibrating in any other mode shape, ¢s , at frequency w
(nx1)

(where w £ mr) we obtain a similar expression
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K fs = ug? M 95 (11b)

(n;n) (nx1) (n;n) (nx1)

Both sides of equation (lla) can be transposed without altering the equation to

give
T 2 T

(X ) = 2w ¥ ) (12a)

(nxn) (nx1) (nxn) (nx1)
or

T T 2 T T
L = e 8 M
(1xn) (nxn) (1xn) (nxn)

where T denotes the transpose of a matrix or vector and the rule for reversing the

order of multiplication of transposed matrices has been used.

But matrices K and M are symmetric so that
(nxn) (nxn)
K - & ana W = W
(nxn) (nxn) (nxn) (nxn)

Hence equation (12a) becomes

o T K = w? ¢fT M (12b)
~r ~ r ~r ~
(1xn) (nxn) (1xn) (nxn)

Now let us post-multiply equation (12b) by QS to give

o T kK ¢ - w? ¢T y 0 = ¢ (13)
~r ~ ~s r ~r ~ ~s rs
(1xn) (nxn) (nx1) (1xn) (nxn) (nx1)
where crs is a scalar quantity as yet unknown.
Now let us take equation (11lb) and pre-multiply by frT to give
(1xn)
T 2 T
¢ ¢ = ] ¢ =
r K2 s A v = e (14)
(1xn) (nxn) (nx1) (1xn) (nxn) (nx1)

Clearly by subtracting (13) from (14)
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_ 2 _ 2 5
0 N (ms “p ) ?r M ?s (15)

(1xn) (nxn) (nx1)

Now we said earlier that ms # mr. The only possible explanation for equation (15)

is that

T

9 M [ = 0 for r#s. (16a)
~r ~ s

(1xn) (nxn) (n;l)

Thus Cg = 0 and also from (13) or (14)

) T K ® = 0 (16b)

<r g is
(1xn) (nxn) (nx1)

Equations (16) are true for any pair of mode shapes we care to choose. This
property exhibited by the mode shapes is known as orthogonality and it has con-
siderable importance. The reason for this terminology may not seem obvious.
However it can be demonstrated by a simple example. Suppose we have the system
shown in Figure 5 which has two degrees of freedom. Then the vibration in the x
direction is completely independent of the motion in the y direction because the
system is physically orthogonal. The mode shape vectors for the vibration in the
x and y directions will be

a and 6]

where a and b are

respectively amplitudes in the x and y directions. Thus if we take the product

[ a O] m 0 0

corresponding to ¢hT M o it will give zero. This property of orthogonality
of the modes shapes is important because it means that we can always choose our
degrees of freedom, which define the motion of the structure, such that the

equations of motion are in terms of independent variables.

5. Modal Decomposition

Let us choose a normalizing vector, Z ., for the mode shape, ¢r , which is defined

by ,



z
~r

(nx1)

where ¢
r

Z
~

(1xn)

M

(nxn)

Now we make up a modal matrix

.
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b

~r
(nx1)

is the scalar constant such that for each value of r

z = 1
~r

(nx1)

(17)

(18)

consisting of n normalizing vectors as columns

(nxn)
z = | z; Z, e Z. e Z, 1 Zn ]
(nxn) (nx1) (nx1) (nx1) (nx1) (nx1)
From the orthogonality condition (16a) and equation (18)
T
zZ, M z, = 0 if rgs for r = 1,n; s = 1,n. (19a)
T
z M z = 1 if r =1,n (19b)
“r ~ =r
T
Hence 7 Z = I (19¢c)
where I 1is the unit matrix. Furthermore from expressions like equations (1lla)
and (11b)
z T K z = w?gz T M oz = 0 r#£s
T~ ~s r ~r ~ =~s
and (20)
z T K z = w ?z T M =z = w2
sr <~ ZIr r “r ~ ~r r

Hence if we take the matrix K

by Z

(nxn)

(nxn)

we shall obtain a diagonal matrix Q

, pre-multiply it by ZT

(nxn)

(nxn)

the squares of the n natural frequencies.

and post-multiply it

containing n elements which are



K
1 <

(nxn)/

(1xn)

~n
(1xn)

or ZT K YA = Q

(nxn) (nxn) (nxn) (nxn)

since the rth diagonal element is W

Thus

ZT K Z

(nxn) (nxn) (nxn)
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% ) o Zp e Zn-1 Zn
(nx1) (nx1) (nx1) (nx1) (nx1)
0 |
2
r
w 2
n-1
© 2
n

2

(nxn)

and all other elements are zero.

o 4T M A Q

(nxn) (nxn) (nxn) (nxn)

]

(21)
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where Q is the matrix of the squares of the natural frequencies.
(nxn)

If we return to the original equations of motion (equation (10)) and pre-multiply

these by gT , we obtain
(nxn)
Z (x -etw o)A =0 (22)
(nxn) (nxn) (nxn) (nx1) (nx1)

We can now carry out a coordinate transformation and put

A = A Q (23)

(n;l) (nxn) (nx1)

where 9 is a vector of normal coordinates. This is a change of coordinates
(nx1)

from the original set to a new set which represents each degree of freedom of the

original set by a combination of proportions of each of the normalized mode shapes.

Substituting equation (23) in (22) we have

20 (K -—w M) z @ = 0

(nxn) (nxn) (nxn) (nxn) (nx1) (nx1)

which on expanding gives

ZT K Z Q _— ZT M Z Q = 0 (24)

(nxn) (nxn) (nxn) (nx1) (nxn) (nxn) (nxn) (nx1) (nx1)

Making use of the relationships expressed in equations (19) and (21), equation

(24) reduces to

2 0¢ -« 9 = 0 (29)
(nxn) (nx1) (nx1) (nx1)
or
0 -w o1 @ = o
(nxn) (nxn) (nx1) (nx1)

This corresponds to an original set of equations

a + 2 q = 0 (26)

(nx1) (nxn) (nx1) (nx1)
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iwt
where q = Q el (27)
(nx1) (nx1)
Equations (26) represent a set of n independent differential equations, each of

which can be written in the form
q +w q = 0 (28)

Thus by use of normal coordinates we can reduce the coupled equations of free
vibration of a multi-degree of freedom system to a set of uncoupled equations,
each involving just a single degree of freedom. For free vibration a multi-
degree of freedom system behaves in exactly the same way as a set of independent
single degree of freedom systems if we express the physical displacements in terms

of a normal coordinate system.

Example 2

Let us go back to the 2-degree of freedom example. The mass matrix is

1 0
0 1
and the mode shapes are 1 and 1

1.62 -0.62

They can be normalized as shown in equations (17) and (18). For the first mode

shape, the product

¢1T M ¢, gives [1 1.62] 1 0 1 = 1* + 1.62°
(1x2) (2x2) (2x1) 0 1 1.62
= 3.62
Hence the constant ey in equation (17) is given by
¢, = v 3.62 = 1.90

Thus the normalized mode shape, =z , 1s given by

(2x1)
z = . [} = 0.526
<1 1.90 ~1
(2x1) (2x1)

0.851

By a similar procedure,

i

? /1.384 = 1.18
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and z, = 0.851
(2x1) _0.526
Thus the matrix z becomes 0.526 0.851
(2x2) 0.851 -0.526
Now we can carry out a coordinate transformation to represent the vector 1
0
corresponding to unit displacement u1 and zero displacement u, in terms of the
generalized coordinates and the matrix z . It will be seen that
(2x2)
1 = 0.526 0.851 0.526
0 0.851 -0.526 0.851

Thus the normal coordinates corresponding to a displacements

u, = 1 are 0.526 x first normalized mode shape

u, = ¢} 0.851 x second " " "
Similarly the vector corresponding to u, = 1 and u, = O can be transformed as

0 = 0.526 0.851 0.851

1 0.851 -0.526 -0.526

The normal coordinates corresponding to these displacements

ul = 0 are 0.851 x first normalized mode shape
u, = 1 -0.526 x second " " "
6. Damped Free Vibrations of Multi-Degree of Freedom Systems

Real structures behave as lightly damped multi-degree of freedom systems. (The
nature of damping and the means of representing damping in structures are discussed
more fully in Chapter 9). Damping is observed as a result of energy being
dissipated in a structural system. We can in general represent this dissipation

of energy by an extra set of forces acting on the structural system. Thus the

equations of motion in matrix form (2d) become



o1

M i + K U o= -B, (29)
(nxn) (nx1) (nxn) (nx1) (nx1)
shere Pd is a vector of damping forces which is time dependent. The minus sign
(nx1)

indicates that damping tends to reduce the magnitude of the motion.

Conventionally, the vector Pd is represented as
(nx1)
= U 30
b3 ¢ 2 (30)
(nx1) (nxn) (nx1)
where C is the damping matrix which is square and symmetric and U is the
(nxn) (nx1)

velocity vector. Equation (29) can then be written as
M U+ c U+ K U = o0 (31)

(nxn) (nx1) (nxn) (nx1) (nxn) (nx1) (nx1)

Equation (31) is the equation of motion of a free damped multi-degree of freedom
system. Under certain circumstances, it is possible to make use of the orthogonal
properties of the mode shapes to simplify the solution of equation (31). (See

Chapter 9). 1In general a solution to equation (31) can be found by assuming the

form
iQ
U= A (32)

(nx1) (nx1)

where A is a vector of complex elements, a + ib, and @ is a complex frequency.
(nx1)

The real and imaginary parts of Q are the damped natural frequency, wd, and a
quantity, A, which is the decay constant of the oscillation. Thus

2 = w,+ iA (33)

The real and imaginary parts of the amplitude vector represent the phase relation-

ships between the amplitudes of vibration of different parts of the structure (See
reference [1]). Substituting equations (32) in (31) and dividing by et e

obtain
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[ - e M +4i2 ¢ + K ] A = 0 (34)

(nxn) (nxn) (nxn) (nx1) (nx1)

The solution to equation (34) is obtained by finding the complex roots, Qr’

which make the determinant of [ - @2 M +ie C + K ] zero. This may
(nxn) (nxn) (nxn)

be done using standard algorithms such as the method developed by Nelder and Mead

[2] or modifications of it.

Equation (33) may then be used to obtain the damped natural frequencies mdr and
h . . R
associated logarithmic decrements, 5r’ for the rt mode of vibration, using
= iA .
Qr Wy t 18, By definition
2718 2"Ar
s = I . (35)
r w w
dr nr

for light damping, where 0o is the rth natural frequency.

7. Forced Vibration of Multi-Degree of Freedom Systems

Structures vibrate when they are subject to time varying forces. These forces may
be of a periodic nature or continuously variable and random depending on the source
of loading. We will confine the analysis in this section to periodic forces only

and leave the analysis of transient responses till later (Chapter 9).

Any periodic non-harmonic function can be expressed in terms of a series of sine
and cosine terms. Thus a periodic non-harmonic force can be expressed as a set of
harmonic forces of constant amplitude (See reference [1]). If the amplitude is
made complex, then sine and cosine terms can be collected together. The equations
of motion for a lightly damped structure vibrating under a variable set of forces,

expressed by the vector P(t) become

(nx1)
M U+ c g vK U = P(v) (36)
(nxn) (nx1) (nxn) (nx1) (nxn) (nx1) (nx1)

If each of the forces making up the vector P(t) is periodic with period, T, then
(nx1)
P(t) may be written as

(nx1) 2mJ

v Lt
P(t) = P_ + ) Pje (37)
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where Pj is a vector of complex force amplitudes. The total response of
(nx1)
the system can be found by summing the responses due to each of the sets of harmonic
o
forces acting separately. Let us consider the jth set and put wj = —%i . The
equations of motion (36) become
. . iw,t
M U, + ¢ U, + K U, = P, e Y (38)
~ ~J ~ ~J ~ ~J ~J
(nxn) (nx1) (nxn) (nx1) (nxn) (nx1) (nx1)
Assume a solution of the form
iw.t
U. = A, e 9 (39)
~J ~J
(nx1) (nx1)
iw.t

By substituting (39) in (38), cancelling e I and collecting real and imaginary
parts, we obtain

( K -w,2 M )+iw, C A, = P. (40)

~ J ~ J -~ ~J ~J
(nxn) (nxn) (nxn) (nx1) (nx1)
Equation (40) can be solved for Aj by Gaussian elimination using a complex
(nx1)

version of any standard method. The vector éj will be complex. The modulus of
(nx1)

each vector component will correspond to the amplitude of vibration and the

argument will give the phase angle. In general the phase angle of the components

of the vector éj will be different from those of force vector Ej

(nx1) (nx1)

depending on the amount of damping.

3

Under certain circumstances, (see reference [3] and Chapter 9), equations (38) can
be uncoupled by using the orthogonal property of the mode shapes to give a set of
n independent single degree of freedom systems which can be solved by the methods

given in Chapter 2.

References

1. Hurty, W.C. and M.F. Rubinstein, Dynamics of Structures, Prentice-Hall,
Englewood Cliffs, New Jersey, 1964.

2. Nelder, J.A. and R. Mead, Computer J. 7, (4), 308-311, 1965.

3. Meirovitch, L. Computational Methods in Structural Dynamics, Sijthoff &
Noordhoff, Netherlands, 1980. '



CHAPTER 4

EIGENVALUE-EIGENVECTOR SOLUTION
by

R.R. Wilson

1. Introduction

In this chapter, methods are presented for solving the free vibration equation for
a multi-degree of freedom system. This equation is called the eigenvalue equation.
Its solution not only gives the natural frequencies and mode shapes but also allows
the set of coupled equations representing the dynamic response of a system to be
uncoupled and hence solved. Thus the technique is at the heart of any general

solution procedure for vibration problems.

Firstly, why is it necessary to consider sophisticated solution techniques for
vibration problems ? Many standard subroutine packages contain eigenvalue solutions
but unfortunately these are quite unsuitable for large structural vibration problems.
Unlike static problems it is not possible to use a method, such as Gaussian elimin-
ation, in which only a small part of the system of equations needs to be in the
computer at the one time. Care has to be taken to ensure that as large a problem

as possible can be solved in the computer store available without at the same time

requiring excessive computer time.

A three degree of freedom system is considered to introduce the terms used. This
example is then used to illustrate solution by the evaluation of the zeros of a
determinant. Three other methods for large systems are presented. The first,
reduction of the equation to standard form and solution using a Stlrm sequence
technique, is considered in some detail and the other two, simultaneous iteration
and the application of the Stlirm sequence technique to the unreduced equations, are

introduced briefly.

Two methods for reducing the total number of unknowns in a problem are considered,
node condensation and substructure analysis. Finally, it is shown how, once the
solution for a particular system has been found, it is possible to estimate the
effect of a small change without having to solve an eigenvalue equation for the

modified system.

2. Three Degree of Freedom System

The system shown in Figure 1 can be fully described by the three coordinates Uy Uy,
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Figure 1. Three Degree of Freedom System.

Figure 2 Mode Shape for lst Natural Frequency
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U, if it is assumed that the motion is only in the vertical direction. Applying

Newton's Law, we have

. , .

mu, = kul + ¥k [u3 4(u1+u2)]

m 62 = - ku2 + Uk [u3 - %(ul+u2)] (1)
T _ .

muy = k [ ug + 4(ul+u2)]

i.e. MU+KU = 0 (2)
5 1 1
where m o] 0 Zk YA YA
M = o] m 0 y K = Tk %k —%k ,
] 6] m -4k —%k k
and g = ul
Yo
Y3

If we assume a solution of the form U = ¢ sin wt, where ¢ gives the amplitude of

vibration of each coordinate, then equation (2) becomes

(K - w® Mo = 0 (3)
Substituting A = w? , we have the eigenvalue equation,
(K =2 Mo = O (4)

In order that this set of equations has a non-trivial solution (i.e. a solution

for which ¢ # 0), we must have the determinant,

[ K-AM|p= O (5)
5 1, 1,
i.e Zk ~- Am Yk -%k = o]
ik Zk — Am -%k (6)
-%k —%k k - am
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Figure 3 Mode Shape for 2nd Natural Frequency

r b B
| I——

Mode Shape for 3rd Natural Frequency

Figure &




This is a cubic equation with three distinct

non-trivial solutions given by

These are the eigenvalues (or latent roots) of

natural frequencies of the system

Substituting each of the eigenvalues in

¢ may be found.

k

For A= )‘l = om 9 = lfl =
k

for A= xz = o ? = ?2 =
2k

and for A = 13 == ? = 23 =

68

roots. Thus equation (4) has three
k 2k
A, o= = = = 7
> o and x3 o (7)

the equation and correspond to
2k

&
2 noand ey = =0

into equation (4), the corresponding

€
]

(8)

(9)

oy

-1

The vectors ¢, are called the eigenvectors (or latent vectors ) of the equation.

They describe the relative magnitudes of the amplitude of vibration of each degree

of freedom giving the (normal) mode shapes of the system when vibrating at each of

its natural frequencies as shown in Figures 2, 3 and 4.

The eigenvectors give the ratios between the different components; the absolute

value of the displacements is determined by the magnitude of the applied forces.

It is often useful to express the eigenvectors as normalized vectors by scaling

them so that, for each eigenvector, the

sum of the squares of its components is 1.

The normalized eigenvectors for the present system are

?ln = 1/ 3 ’ ?2n
1/ /6
2/ /6

It should be noted that the eigenvectors are mutually orthogornal

= /Z1, by = 1/ /3
-1/ /2 i/ /3
0 -1/ /3 (10)
i# (11)
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Value
of

deter-

minant

Figure 5. Zeros of the Determinant for 3 Degree of Freedom

System.

Value
of
determinant

/\v/ |
n n+l

Figure 6 Determinant for System with Two Close Eigenvalues.
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The successive minors
are the determinants
of the series of

submatrices shown.

Four Degree of Freedom System.
] ) ] ]
Bzt s e
321 %22 ‘%23 %24 4 P25
f31 _ %32 _ %33 %3 ) %s
21 _ %a2 23 %4 4 %45
a

Successive Minors of a Matrix.
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and thus for normalized eigenvectors we have

T
. . = &, ., (12)
~in ~jn ij
where §.. = 1 i=3
1J
0 i#]
3. Zeros of Determinants

For the three degree of freedom system discussed in the previous section it was
possible to determine the‘zeros of the determinant directly, by solving the cubic
equation (6). For larger systems other techniques have to be used. By plotting
the value of the determinant against A, the eigenvalues may be found graphically.
This is illustrated in Figure 3. Where it is not practical to evaluate the deter-

minant by hand, root search techniques can be used on the computer [1].

One such procedure consists of evaluating the determinant for a range of values of
A. When there is a change of sign between successive evaluations, there must be a
root lying in this interval. This root can be found to any required degree of

accuracy by successively bisecting the interval containing the change of sign.

This process can be made more efficient by using the magnitude of the determinant
to predict a root by interpolation. However this method has two major drawbacks.
Firstly, when there are two identical or nearly identical roots, it is possible

that the technique will fail to find either of them. Consider a system in which

the plot of determinant against A has the form shown in Figure 6.

If for example, the determinant is evaluated at the points shown, then there will
be no change of sign between the values at n and n+l. Hence, the two roots between
these points will not be found. To ensure that this situation does not arise it

is necessary to use very small intervals, resulting in excessive computing times.

A second difficulty is caused by the fact that, for large systems, the absolute
value of the determinant can become either very small or very large. Sophisticated

scaling procedures are required to prevent overflow or underflow occurring during

the computation.

4. Banded and Symmetric Matrices

Consider the system shown in Figure 7. The equation of motion for free vibration

is given by

[K-2MJo = O (13)
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where M = m, 0 0 0] and X = kl+k2 —k2 0 0
0 m, 0 0 —k2 k2+k3 —k3 0
0 0 my 0 0 —k3 k3+k4 —k/_1
0 0 0 m, 0 0 —k4 k4

It can be seen that the mass matrix is a dZagonal matrix; only those terms on the
leading diagonal are non-zero. This reflects the fact that the system has lumped
masses. In the finite element method discussed later, the mass matrices have non-
zero off-diagonal entries. However, this reduces the size of the problem that can
be considered and, for many applications, it is doubtful if the additional accuracy
of representation gained by introducing these off-diagonal terms always justifies

the increased complexity of solution.

In all the examples considered and in general for all structural problems, the
mass and stiffness matrices are symmetric; the (i,j)th entry is equal to the
(j,i)th entry. It is important that solution procedures take advantage of this.

For an n x n symmetric matrix, it is only necessary to store n(n+1)/2 numbers.

The stiffness matrix K is banded with a semi-bandwidth of b = 1. It has non-zero
terms only on the main diagonal and on b diagonal rows on either side of it. This
reflects the fact that there is no interaction between for example, degrees of
freedom 1 and 4. This situation often arises in practice - in a structure a degree
of freedom interacts only with those freedoms in the adjacent parts of the structure.
It is frequently useful to remember the degrees of freedom so that all the non-zero
terms are grouped near the main diagonal and automatic schemes have been formulated
for carrying this out [2,3]. For a symmetric banded matrix it is necessary to

store only (b+l) n numbers.

5. Reduction of Eigenvalue Equation to Standard Form

Instead of directly solving the eigenvalue equation,
(K -2 Mo = 0 ’ (14)

it is often preferable to reduce it first to a simpler form.

Let y = @ ? (15)
-1
i.e ? = M y (16)
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Then equation (14) can be written in the form

(A-21)y = O (17)
. . ) . i |
where I is the identity matrix 1 0 o...0 0
0 0 1
0 o . 0
0 1

and A = K Mnl. )

The solution of equation (17) may be regarded as finding the eigenvalues of the

matrix A.

Because of the need to invert a matrix, this method is only suitable for small
systems. In addition matrix A is not symmetric and so the full matrix would

require to be stored.

If matrix M is positive definite (this corresponds to the requirement that the
kinetic energy of the system is always positive) then, by using a technique called

Choleski decomposition [4,5], a matrix L can be found such that

M = LLT, (18)

where L is lower triangular i.e. it has non-zero entries only on and below the

main diagonal.

Thus equation (14) can be written

Ko = aLLe a9)
Now E-T ET = E, and so

kahe = raaly (20)
Premultiplying by E_ we have

wrxrha e - ale (21)

= 0 (22)
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-T
where B = L "KL and Z =1L"¢ (22a)
Thus we now have a new eigenvalue equation in standard form, which has the same
eigenvalues X as equation (14). The matrix B is symmetric and so it is possible

to use solution techniques which take advantage of this.

6. Solution of Standard Eigenvalue Equation by Sturm Sequence Technigue

It would be possible to calculate the eigenvalues of the matrix E directly but
since unlike M and E it is not banded, considerable calculation would be required.
It is preferable to find a matrix which has the same eigenvalues as § but which is
of simpler form. Householder's method [6] provides a means for doing this. Matrix
? can be reduced to a tridiagonal matrix which has the same eigenvalues as E (a
tridiagonal matrix is n one which has non-zero entries only on the main diagonal

and the two adjacent rows).

A series of mutually orthogonal matrices Ei can be found, defining a series g. with
B = P,° B, P, , (23)

where B = §

The Pi are chosen to make zero certain entries of Bi+ Equation (22) can be

1
written as
Bl Z = 22 (24)
T
Now P_ P = I, and so
~L~l T T
B)Py Py 2 = AP P2 (25)
T T T
Ppm By Py(RyT 2) = AP 2 (26)
i.e. (B, — A I)(P Tzy - o (27)
=2 LA R Z

Hence the eigenvalues are unchanged but we have new eigenvectors P T Z. This

process can be repeated until a tri-diagonal matrix is obtained. This will still
have the same eigenvalues as our original equation but eigenvectors

T T T T
En—z gn—3 T 22 El z.
The eigenvalues of this tridiagonal matrix can be found by bisection [7] using a
result from the theory of polynomials that the successive minors of the matrix

(see Figure 8) form what is called a Sturm sequence. The number of roots (i.e.
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eigenvalues) greater than Xa is given by the number of changes in sign in the
sequence when the minors are evaluated with X = la. By calculating the number of
eigenvalues greater than Aa for a range of values of Aa and bisecting any interval
containing more than one eigenvalue, it is possible to isolate each of the required
roots. These may then be determined to any required accuracy by successively bi-
secting each interval containing a root. This method allows all the eigenvalues

in a given range to be found or, for example, the ten lowest eigenvalues.

(1) 1 f12 Pz fis ! e

- -— =t

t 1 .
(2) asy PPN asg . %oa VoA The successive
(3) e - o . ! a minors are the
t

_SE - - _33 - = -33 _1 34 ' 35 determinants of
(4) 841 842 243 B4 v s the series of

_____ P |
(5) i ag, ag, agy agy age ] submatrices shown.

Figure 8 Successive Minors of a Matrix.

Once the eigenvalues have been found the corresponding eigenvectors of the tri-
diagonal matrix can be found by inverse iteration (Wielandt iteration) [8]. Two
iterations are usually sufficient. The eigenvectors of the standard equation (22)
are then calculated by premultiplying the eigenvectors of the tridiagonal matrix
by the Ei' Finally the eigenvectors of the original system (14) are determined by

equation (22a).

7. Solution of the Original Equations using Sturm Sequence Technique

It can be shown that the sign of each of the tridiagonal matrix is the same as the
sign of the corresponding minor of (§ - A @) [9, 10]. Thus instead of reducing
the equations to standard form and then finding the equivalent tridiagonal matrix,
it is possible to use the Sturm sequence property of the minors of the original

matrices.

However, unless the bandwidth of the matrices is very small, this process can
require excessive computer time. To overcome this, it is possible to use the
Sturm sequence method applied to the original matrices simply to find a series of
intervals each containing only one eigenvalue. This avoids the possibility that a
root might be missed. The roots are then determined accurately by evaluating the
numerical value of the complete determinant and using interpolation techniques to

accelerate the process of searching for a zero.
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8. Simultaneous Iteration

The method of simultaneous iteration (or direct iteration) [11] is a method of
finding the roots of the standard eigenvalue equation (22). A set of mutually
orthogonal trial vectors are selected. If possible these should be realistic
estimates of the eigenvectors corresponding to the lowest eigenvalues but in a
general scheme may be, for instance, the columns of the identity matrix. Let us
assume we have chosen 3 mutually orthogonal vectors Yi' These may be written as

linear combinations of the (unknown) eigenvectors of the matrix B.

Yl = %1 + 012%2 + C13%3 + .
Vo = Cpp%y + 25 + Coglg + e (28)
Yz = Cgp%) + Cgplp + 23+ +on
Now if the Cij are less than 1 then, since the Vi are mutually orthogonal, we
have that the equations can approximately be written as
Viom %+ Cpp% + CigZg t
Vo = 0%y + 2y + CpiZq + (29)
V3 Cia%1 ~ CogZp gt
A new set of vectors Vi’ can be defined by
V! = BV (30)
' — 1] ' 1
where V' = [V,'V," Vy']  and Y (v, vy V4]
Now since Bz = x. Z s (31)
~ ~1 ~1 ~1
1 —
Vit = MEp r 0% A0 2, ¢
' - -
Vo' = A0p0%y + 252, + Ag0502, + (32)
' = - -
V' = ACiaZy = 20057, + M52+
. . T T
We can now define the matrix D by D = VV' = V BV (33)
Thus D < M “C1aAy2p) “C13(rm2g)
€10 =25) s ~Ca3(A5m23)
-013(A1-x3) —023(A2—x3) Ag (34)
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If the trial vectors we selected had been the true eigenvectors then D would be a
diagonal matrix with the entries on the diagonal equal to the eigenvalues. 1In
general the off-diagonal terms will be non-zero because of the coupling between
the trial vectors. The entries of 9 can then be used to suggest a second trial
set of vectors. After they have been made mutually orthogonal, this second set of
vectors can be used to repeat the cycle. This process is continued until the

required accuracy is obtained.

9. Comparison of Eigenvalue Solution Methods

We have now considered four methods of solution and it is useful to compare the

different approaches. The methods were

1) direct evaluation of the zeros of the determinant
2) application of Stlrm sequence technique to the original equations perhaps

using determinant evaluation for final root determination

3) reduction to tridiagonal form and then application of Stirm sequence
technique.
4) simultaneous iterations.

The first two methods are applied to the original system of equations, the second
two to the equation after it has been reduced to standard form. As mentioned
previously, direct evaluation of the determinant can fail to find close or

identical roots. Because of this, determinant evaluation on its own is not suit-
able for a general solution scheme. Simultaneous iteration suffers from the dis-
advantage that its rate of convergence is dependent on the problem and in particular
on how well separated the roots are. Both the methods using a Stiirm sequence
technique have no difficulty in finding pairs of identical eigenvalues. It should

be noted however that they do not produce the correct eigenvectors in this case.

The storage required and the number of operations performed during the calculations
by each of the methods is very much dependent on the type and size of problem.
Estimated formula for these computational parameters based on references [12] and
[1] are given in Table 1. For the simultaneous iteration method, estimates have

been made of the number of iterations and number of trial vectors required.

Figures 9 and 10 show plots based on these formulae for the storage required and
the number of operations for a typical problem. It has been assumed that 10 eigen-
values are required and that the semi-bandwidth of the matrices is 20. In general
there is no real best buy. All the methods discussed (and others [1,4]) are used.
Perhaps method 3, the reduction to tridiagonal form and application of the Stlrm

sequence technique is the most widely used in this country. Because of this, it
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Method Storage required Number of operations
1 determinant 2n(b+1) + 9n (3nb®> + 39nb + 114n)m
evaluation
2 Sturm sequence 5nb 25nb® m

on original system

2
3 Sturm sequence ¥n® + 2nb 3/2nf + §n3 + mn?

on tridiagonal

4  simultaneous 2nb + 3n(m+3) + ¥nb® + (m+3)% +

iteration %(m+3)? +15n(m+3) + 18nb(m+3)

n = number of degrees of freedom; b = semi-bandwidth; m = number of

eigenvalues required.

Table 1 Storage and Number of Operations for Eigenvalue

Solution
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has the advantage that there is a number of well tried algorithms available which

are based on it.

10. Node Condensation

For large systems, the size of the matrices is such that it may not be possible to
solve the eigenvalue equation in the computer store available. One technique
which is used widely to overcome this difficulty in the finite element method is
node condensation [13, 14] . Consider a structure which is represented by n
degrees of freedom but with forces applied only to the first r of them. The

resulting deflections are given by

Py = K1 Ko Y (35)
T
0 Ko ko Y,
i-e- SR T o B P (38)
d 0 = k' k (37)
an 20T Zoh R

Substituting for u, from (37) into equation (36) gives

2

T
Ppo= (kyp = kyokooki )y (38)

Thus the system is described by the equation

Pp o= Ky, (39)
T
* = -
where k = Kyg T KoKooK,

This is equivalent to a coordinate transformation from the original coordinates u

to a new coordinate system y(= ul). The transformation matrix A is given by
u = Ay (40)
Since
o= | o= I [31] (a1)
T
) Koo K12

we have A = I (42)
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The potential energy of the system is given in the original coordinate system by

V = %u Ku (43)
P T D T
Vo= by Kly) o= oy (A K My
. T
V = Yy k*y |, (44)
where k* = AT K A

The stiffness matrix calculated in this way is identical to that given by equation
(39).

In a similar manner we can introduce a mass matrix defined by

m¥ = A" M A . (45)

These reduced matrices can now form an eigenvalue equation which is able to be

solved in the available computer store.

For the vibration of a practical structure, there will be forces applied at every
degree of freedom having a mass associated with it. (By D'Alembert's principle
equivalent force = -m U.) However we can decide to retain only the more important
freedoms, the master degrees of freedom, and condense out the others, the slave
degrees of freedom. The eigenvalue equation can then be solved in terms of the
masters. The complete mode shape can be found by substifuting in equation (40)

for the slave freedoms.

The choice of master freedoms is largely a matter of experience. It is relatively

simple if one already knows roughly what the mode shapes will be. Perhaps the only
general guideline is that it is usually better to eliminate rotational freedoms and
retain only translation freedoms. This method does however allow reasonably

accurate predictions to be made of the vibrational behaviour of very large systems.

11. Substructure Analysis

The technique of substructure analysis [15] can be used to reduce the size of
eigenvalue equations instead of node condensation. For a very complicated structure
rather than solving in terms of all the freedoms, only those freedoms which couple
the main sections of the structure are used. For example, an aeroplane could be
considered as an assemblage of 'fuselage, wings and tail. The effect of each sub-

structure is represented in terms of its normal modes calculated with constraints
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applied to the coupling freedoms. Modes of the complete structure are represented

as a synthesis of the modes of the substructures.

This method has two advantages over node condensation. Firstly it is often
important to know the local resonances of a structure and this information is
given directly by a substructure analysis. Secondly, substructure analysis allows
a great reduction in computation where the structure is repetitive, having a
number of identical components. On the other hand, it is not as suitable as node

condensation for use in a general solution scheme.

12. Rate of Change of Eigenvalues

For large systems, it requires a great deal of computer time to solve the eigen-
value equation. It is not feasible to solve for many design variations. One way
round this is to calculate the rate of change of the eigenvalues [16, 17] with

change in design parameter.

When a structure is vibrating in its ith mode, the maximum potential and kinetic

energies are equal.
. P T ,
i.e. % ¢i Ko, = %A, 6. Mo, (46)
If we now consider a small change in design, then there will be new stiffness and
mass matrices K + 8K and M + AM. Thus if the corresponding changes to the ith
eigenvector and eigenvalue are A¢i and A¢i, we have
%o, + 80)T (K + 0K) (9, + Ap.)
~i ~1i ~ ~ T~ ~i
— 1
= ROy o+ (g + 89 )(M 4 AM) (9, + 80,) (47)

Expanding and retaining only the first order terms we have,

T
25 (8K -n ey,
AN, = (48)

Thus once an eigenvalue equation has been solved, an estimate of the effect of a

small change can be made without having to solve a new set of equations.
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CHAPTER 5

APPROXIMATE METHODS FOR CALCULATING NATURAL FREQUENCIES
AND DYNAMIC RESPONSE OF ELASTIC SYSTEMS

by
H. Tottenham

Since the dynamic analysis of any but the simplest structure is a complicated
business it is useful to have some approximate methods which will at least indicate
whether a more detailed analysis is necessary. The purpose of this chapter is to
outline a few simple devices which can, in many cases, help us to determine the

natural frequencies and dynamic response of elastic structures.

1. Equivalent One Degree of Freedom Systems

The equation of motion of a single degree of freedom system is
M= = - kw + p(t) (1)

where M is the mass of the system, k the elastic stiffness, w(t) the displacement

of the mass and p(t) is the applied load. The natural frequency is given by

and thus depends only upon the ratio k/M. The actual response however depends upon
both gquantities separately, or what is equivalent, upon one of these and upon the
ratio. If then we wish to replace some system by an equivalent one degree of free-

dom system we must make sure that we have appropriate values for both k and M.

In passing we note a useful result. If the mass M is acting under the influence of

gravity as a static load Mg the displacement W would be
or k=M'—g'
w

Substituting this into (2) gives

If ws is measured in mm, we have g = 9810 and hence

w = 99 / v ws(mm) (3)
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-2
or if LA is measured in cm, g = 981 (cms ) and

1 981 / 981 5
= =— — = = 3
n 2m w Anly (32)

s s sz(cm)

Simple Beams

We consider now a simply supported beam for which we know

5 L
EI mL"*

The total mass is M = mL and the 'stiffness' is thus

384 EI
ko = SL?

We wish to replace the beam by an equivalent one degree of freedom system, with

some mass M1 and spring stiffness k If we consider the beam as a weightless

1t
elastic spring we have

1 L®
w o= 2 PEr
48EI
and its stiffness kl is 3 For the same deflection we must have
5 PL3 1 PL?
384 EI - 48 EIl
d hence k. = 2 k
and he 18 .
k
1 5
We put o, = T = 3§ (4)

To get the correct natural frequency we must have

) 1 . EI
w = = = —
M1 ML
and hence
Ml 384
T = .7 = 0.493 = 0.5 = a (5)

If for a central load P(t) the amplitication factor is n then

P(t)

wmax = k1 n (6)

and the moments and shear forces can be estimated by the usual methods of structural

ust be replaced by a concentrated equivalent
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force and for a uniform load Peff = azp(x)L. Considering other cases similarly we

get
Beam al oy
.5 .625
4 .57
.40 | .53
.24 | .25

Beams with concentrated masses

Although Durkerly's formula is intended to be applied to the coupling of elastic
systems we can also use it for superposition in one system. For example if we

have a concentrated mass M at midspan in a beam whose mass is m per unit length we
EI 48EI
Y1 % 2/ L Y2 7 4/ Tane

and can estimate the natural frequency from

have

1
w2 T oz Yt L2 (7)

The graph (Fig. 1) shows the accurate values of w for a simply supported beam and

a cantilever loaded at the tip. For convenience the factor plotted is y which is

such that
I
— 2 /E__
wo=x mL* (8)

2. Continuous Beams

If we have two separate lumped mass systems with natural frequencies wy and w, then

the natural frequencies of these when they are coupled, 51 and 52 are such that

1 1 vy > Uy (9)

However when we have continuous systems this is not so. The fundamental frequency
of a coupled system is between the fundamental frequencies of the separate systems.
This arises from the fact that we have two degrees of freedom, rotation and dis-

placement, in the continuous system. A good first estimate of the natural frequency

can_be found from
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w = n /ﬁhl W W, ... W (10)

where mi are the natural frequencies of the i separate spans, provided that the

values are not too disparate, i.e. all the values are in the range w < 2w . .
max min

Figure 2 shows values of Yy for two and three span beams of different effective

spans the effective span being the actual span multiplied by kl

m ESIS
ko= /@ ET (1)

S

where the suffix s denotes the quantities of the span taken as the standard.

3. Distribution Methods

If we have a continuous beam, each span of uniform section and mass, we can derive

dynamic '"three moment'" equations

+ (Bn + B )M + ¢ M = 0 (12)

Oln Mn—l n+1l n n+l n+l

where M are now moments

L [ sinh y_ = sin ¥y
n n n
EI

a = - - (13a)
n 2sinh Yn sin Yn
Ln cosh Yn sin Yn -~ sinh Yn cos Yn
g = (13b)
n EnIn 2 sinh sin
Yn Yn
and wzann“
4 _ -
T TEI (14)
nn
We can approximate to these coefficients by
ETI y_o ! y_*
nn n n
@, = 6Ln (1 + 30 ) /(1 ~ 8 ) (15a)
E I y ¥ y !
n n n n
B, = ” (1 -5 /(1= 58 ) (15b)
n

We first of all take a value for w and evaluate the coefficients. Starting at one

end of the continuous beam we can take Ml =1, say, and calculate M2, 3
until we reach the other end of the beam, and find Mm, say. We then use the last

M etc.

equation to find Mm from Mm’ it will generally differ from that obtained initially.

-1
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We then take a different value for Q and repeat the process. Plotting the
difference in value found for Mm—l in each case against w will generally lead to
a value of w sufficiently accurate for general use after two such calculations.
Nowadays with calculators which readily produce hyperbolic functions the more
accurate formulae may be used. The quantities (13) are also readily tabulated

against Y-

4. Multi-storey Frames

Let us now consider rigid jointed frameworks consisting of uniform beams and columns.
The two limiting cases for the natural frequencies are (a) the beams are very stiff

compared with the columns and (b) the columns are very stiff compared with the beams.

For the first case let us look at a frame of r columns each having storey heights

h. The stiffness of a single storey against lateral motion is

12rEI
h3

and hence if the mass of each floor is M we have for a single storey

EI
o, = 2 /3 e (16)

For a two storey building we can easily find the lowest frequency as

3-/5 TEI .
W = JSEFT 2B S (17)
and for n storeys (n large)
L TEI
“y T Pnel 2 3 Mh? (18)

It will be seen that even with n = 2 we have factors 0.618 and 0.626 from (17) and
(18).

At the other extreme the system acts as acantilever with lumped masses. The single

storey system gives

1 . VL3 (19)

For a large number of storeys we can take a uniform mass/unit height M/h, and thus

find
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rEI
wn = 3.516 Mmen®
w
3.516 EI 1
= n? Mh ¥ on? (20)

Using formula (20) gives an error of only 4% when n = 2 and less than 1% for higher

values of n.

Since the frequency (19) for the 'rigid columns' case is one half of that given

for the 'rigid beam case' we can write

;0= 2i:1 w*, (a) or —— w¥* , (b) (21)

or the two cases, w* being given by (6). If the 'dynamic' stiffness y of the

floor beam is more than three times that of the column the formula (2la) may be

used.




CHAPTER 6

DETERMINATION OF RESPONSE
by

G.B. Warburton
1. Introductory Remarks

In addition to the outline in the introduction, methods of determining response have
been given in Chapter 5. The purpose of this chapter is not to give further methods,
but to consider in greater depth the normal mode method. It will be recalled that
there are three main types of excitation, namely harmonic, transient and random.

It has been shown that the normal mode method can be used to determine the response
to harmonic and transient excitations; also this method yields the complex frequency
response function, which is required in the determination of random response. For
comparison the frequency response method yields directly steady-state solutions for
harmonic problems and has similar applicability to the determination of random
response as the normal mode method. The direct or numerical integration methods

are applied in practice only to transient problems, but have added importance
because of their applicability to non-linear problems. Thus the normal mode method
is considered in greater depth here because of its versatility, but it is also the
method which provides some physical understanding of the vibration of complex

structures.

The linear vibrations of any structure can be represented by the matrix equation

MU+ C

2T
+
R
f i en}
1}
o
o+

(1)

where @, g and 5 are the symmetric mass, damping and stiffness matrices of order

n x n; g, g and g are the vectors containing the displacements, velocities and
accelerations respectively, and E(t) is the vector of excitation forces. Consistent
definitions must be used for 9 and E(t); thus if uj is the displacement at
coordinate j, pj(t) is the force applied at j and acts in the direction of u, where
u; and pj(t) are the jth entries in the column matrices 9 and E(t) respectively.

As engineering structures are usually complex, their response to specified
excitations can be determined only by approximate methods. The finite element
method is the most general and powerful method available; when it is applied to a
structure, the resulting approximate mathematical model is a multi degree-of-
freedom system, which can be represented by equation (1). In some examples in
earlier chapters that related to equation (1) a diagonal mass matrix was obtained
for multi degree-of-freedom systems,which consist of a chain of springs and masses.
In conventional applications of the finite element method consistent mass matrices,

which are symmetric, are generated; thus M in equation (1) is assumed to be
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symmetric. Equation (1) is obtained also if the variational form of the finite
difference method or the Rayleigh-Ritz method is used to generate the approximate

model of the structure.

As has been shown in the chapter on transient response, a transformation from the
original displacement vector U to the generalized or normal coordinate vector g

is made through the relation

U = 2gq (2)

17 Zpr tt %

where the modal matrix Z consists of the normalized modal vectors z
with the rth vector Zr in the rth column of Z. This leads to the matrix

equation

gq+Bd+ 2q = Z° P(t) (3)

where € is a diagonal matrix, containing the squares of the natural frequencies,

2 ... w %, and
n

B = 2 C2Z (4)
If we have proportional damping (also known as classical or Rayleigh damping), i.e.
C = A K+ X M (5)

the matrix B is diagonal and equation (3) consists of a set of uncoupled equations;

a typical equation can be written

. . ) _ _
a. + 2errqr +o *q = fr(t)’ r=1,2, ... n (6)
where 2y w = A+ A w? and ¥y is the non-dimensional modal damping parameter
rr m k r r
for mode r, and f (t) = T 2. p.(t).
r j=1 Jr "

Equation (6) is of similar form to that for a single degree-of-freedom system and
can be solved by identical methods; when the coordinates qr have been determined,

the displacement can be obtained from equation (2).

.Steady-state Response

The particular case, when the excitation is a harmonic function of time and the

steady-state response is required, will be discussed in more detail. The

excirttationgforcegatycoordinatesndumis assumed to be p. sin (gt + sj), where pJ

is not a function of time; inertial loading can be allowed for by taking
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pj = dj w? where d. is a constant. As shown in a previous chapter, we consider

a force component pjelmt elej, put dr = imqr and ﬁr = - mzqr, obtain a complex

expression for q and take the imaginary part of the complete solution, as sin
r ivt _igj

(wt + Bj) is the imaginary part of e Thus from equation (6) the complex

form of qr is

n

eiwt z z. p. iBj
q = J=1 Jjr 7j
r w2~ w2+ 2iy wow

T r
n
iwt iBj 2 _ 2 _ o
e jzl [zjrpje e, w 20y w w]

2_ 2)y2 4 2 2 2
(w w?)? + Y2 et
Using equation (2) to determine a typical displacement ug and taking the imaginary
part of the complete complex expression

iwt
e

o~ 33

iB 5
J 2_ 42 _
zg, {zjrp.e } (mr ® Zermrm)

J
j=1

(w 2= w2)2 + 4y 2g 2 4?2
r r r

Thus for Y. small a. is large when w = w s if in addition w, is well separated
from the adjacent natural frequencies and

r-1 “r+1’
large when w = w . Considering the displacement ug (and assuming that =z is

q, with k # r 1is not

not small), we have the rth resonant peak at an excitation frequency in the
vicinity of w = 0. and the magnitude of this peak is dominated by the contribution
from mode r, i.e. by qr. Thus for a single excitation pj sin wt the resonant

amplitude may be approximated (provided that the above conditions hold) as

= z
s zsr jrpj

2

ZYr “r

Considering this single excitation the response at any excitation frequency « can

be written in complex form as

wt

i
u, = Hsj(w) pje

where the complex frequency response function (or receptance)

n zZ_ z. 2— 42 - 21
H () = . sr jr (wr w Y Wy w)
Aw) =
sj A
r=1 (wrz - w?2)? 4 4erwrz w2
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The response function Hsj(m) is required when evaluating the response of a multi-

jegree-of-freedom system to a random excitation.

Damping
The following points will be discussed: the significance of equation (5); more
general conditions than equation (5) for which B is diagonal; and procedures when

B is not diagonal.

Equation (5) is important and not as restrictive as it appears. In order to allow
for internal damping in the members of a structure it is conventional to replace

Hooke's law, i.e.

where o and e, are the stress and strain in the X-direction and E is Young's
modulus, by
dg
X )

o = E(€x+>\k?

X
The change in relationship implies replacing K U for an undamped system by K U
+ xk K 0 for the damped system; thus we have satisfied equation (5) and xm = 0.

This assumes that Xk is a constant for the whole structure. From the general
relation

— 2
2Yr W= A+ A W (7)

i.e. the modal damping parameter Y. increases as the mode number increases.
Available experimental evidence suggests that this relation may overestimate the
damping in higher modes.

If the damping in two modes is prescribed, for example and Yoo Am and A

Y

can be found to satisfy equation (5), but the damping of ihe higher modes, Yr Sith
r > 3, will have to satisfy equation (7). If the damping in more than two modes is
prescribed, it will be impossible, in general, to satisfy equation (5). However,
additional terms can be added to the right-hand side of equation (5); for example,
Al 5 M_l E and AZ @ 5—1 @ are allowable additional terms. With four terms the
coefficients A can be selected to satisfy four modal damping parameters Yr .

Further terms can be added if required; the uncoupling condition is that each term

Ci (j=1, 2, ...) on the right-hand side of equation (5) must satisfy
0. Mtk - kM,
Fo~ - ~~ 3
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If all modal damping parameters Yr can be estimated, it is not necessary to form

the damping matrix C, but merely add the appropriate term, ZYr ® é

, 1in each
r °r

uncoupled equation (6) at the last stage of the modal analysis.

There are problems for which proportional damping does not exist; for instance, in
most soil-structure interaction problems the level of damping in the soil, which is
mainly due to radiation, is higher than that in the structure. Then for a system
with n degrees of freedom equation (3) consists of n equations, which are coupled
through their damping terms. These equations can be solved by one of the methods

of numerical integration. At first sight this procedure is not advantageous, as the
original n coupled equations in the physical coordinates, equation (1), have been
exchaqged for n coupled equations in terms of qr. However, as only 1 modes make
a significant contribution to the response and i < < n, working in terms of the
normal coordinates qr requires numerical integration of significantly smaller
matrix equations. This procedure is advocated and illustrated by Clough and
Mojtahedi [1].

Approximations that allow the normal mode method to be used when the matrix B is
not diagonal are important in practice. Thomson et al [2] suggest that the n;n—
diagonal matrix § should be replaced by a diagonal matrix with the same diagonal
terms as the original matrix, (i.e. the off-diagonal terms of B are replaced by
zeros); then the standard normal mode procedure is followed. Ailhough the literature
contains some conflicting numerical evidence, it appears that, provided damping is
light and natural frequencies are reasonably well spaced, this approximation intro-
duces acceptable errors allowing for the uncertainties regarding damping values in
real structures. The author [3] has given a criterion, which should be satisfied
in order that neglecting the off-diagonal terms in § does not lead to excessive

errors in major response quantities. The criterion is:

bI‘I‘ mSZ
v, < 0.05 | ———— -1 (8)

2b w2 .
rs r min s

where Y. is the damping ratio for the rth mode, W, and w are natural

frequencies, brr and brs are elements from the matrix ? and the minimum of
the expression |..... | with respect to s 1is taken; s may take any integer
value between 1 and n other than r. 1In practice, equation (8) is applied only to
the lower values of r, where significant resonant response may occur. For each of
these values of r the right-hand side is obtained by considering a few values of
s on either side of r. Although the criterion was developed from a study of test

problems, further numerical evidence, which relates to large practical systems, would
be beneficial.
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Uncoupled equations can be obtained for any damping distribution by working in terms
of damped normal modes (instead of the classical undamped modes), but the n second
order differential equations (1) have to be replaced by 2n first order equations
and analysis is in terms of complex eigenvalues and eigenvectors. Traill-Nash [4]
has contributed recently to this method and also surveyed earlier applications by

others.

4 Truncation of Series Solution

Considering the determination of maximum response (displacement, acceleration,
stress etc) from equations (2) and (3), only a fraction i of the total modes n,
where in general i < < n, will make a significant contribution. These i modes
must be identified; i, or the ratio i/n, depends upon the response quantity of
interest and the time history of the excitation, as well as on the system, and
general rules cannot be formulated, although previous experience of similar
situations is valuable. Assuming that equation (1) represents a finite element
idealization of an elastic structure, it should be checked that these 1 modes are
reasonable approximations to modes of the true structure. This can be achieved by
varying the idealization and demonstrating that these modes are unchanged within a

specified error criterion.

The effect of the time history of the excitation and the response quantity of
interest on convergence will be illustrated by a simple example. We consider the

two-storey frame of Fig. 1; the base EF is subjected to a horizontal displacement

X
i

0.01 sin wt/t_ (m) 0O tgt
o [¢)
X = 0 tst

where (i) to = 0.2s and (ii) to = 0.075s. For free vibrations w, = 19.54 rad/s

and w, = 51.17 rad/s. The modal matrix

2
0.5257 0.8506
Z = x 1072
0.8506 ~0.5257
For response X = Z q

The response is determined for the excitation era, 0 < t < to’ and for the ensuing
free vibrations (t > to). For simplicity damping is neglected. For brevity

expressions for qr willobergivenronly for t > to, as maximum displacements in

the free vibration era are greater if tO = 0.075s and comparable to maxima in
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the excitation era if t_ = 0.2s. (Further details are given in Reference [5]).

For (i) to = 0.2s, a = 2.339 sin (mlt + al)
a, = 0.0866 sin (w2t + a2)
for (ii) to = 0.075s, q = 1.220 sin (mlt + al)
a, = 0.550 sin (m2t + a2)

For case (i) the response is dominated by the first modal contribution q1 and only

a small error will occur if the contribution from a5 to Xy and X, is .neglected.

For case (ii) the contributions from the two modes are of comparable magnitude. If

now the accelerations of the two masses, X and X are required, then from

1 2
X = Z q
. R
and qr = wr qr ’
we have for case (i)
4, = - 893.1 sin (mlt + al)
d, = - 226.7 sin (mzt + u2)

Thus the contribution of the second mode to the acceleration response is now

significant.

When truncation is applied, the response is found by summing contributions from i

modes with i < < n.  Thus, instead of using equation (2), we evaluate

U = Z* qg¥* (9)
11 P1TTTT %14 94
Z* = _— ¥ =
where 4 Zoq Zos Zos and q = 9
L Zn1 Zn2 Zni ] L 941 |

An improvement in the accuracy of this evaluation can be obtained by adding the
'static' solutions, which correspond to modes i + 1, i + 2y~ n. Alternatively,
for given accuracy a smaller number of modes i has to be retained in the above
equation if the 'static' contributions from the higher modes are included. 1In

theory ‘static' contributions are determined by solving equation (6) for r = i + 1,
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i+ 2, ———- with the inertia and damping terms neglected.” In practice, after some

matrix manipulation the improved solution can be expressed as

-1 -1 T

U = Z¥ g* + K P - Z* [g¥] Z* P (10)
i 1/u)12 0 0--~-0 17
~1
where  [@*] = 0 l/wé 0---0
- - = 2
-O 0 0 l/u)i—

The second and third terms in equation (10) represent the 'static' contributions
from modes 1, 2, ——— n and from modes 1, 2, ——— i respectively. The expression
requires that only the natural frequencies and mode shapes for modes 1, 2, ——- i
are evaluated. It has been known for many years that inclusion of the 'static'
contributions associated with higher modes improved accuracy, but this modern form

is based on the work of Hansteen and Bell [6].

In an earlier chapter the frequency response method of determining the steady-state
response to harmonic excitation has been given. If the excitation vector is P sin

wt [replacing P(t) on the right-hand side of equation (1)], the response is given by

where J = K-w?2M+ ivwC

This method can be used whether or not the modal method gives uncoupled equations,
but requires the inversion of the complex matrix J at each excitation frequency w
of interest. In practical problems the order of t;is matrix n may be large, so
that considerable computation is required. If the modal method gives uncoupled
equations series expressions can be used to determine steady-state response; in
practice, considerable truncation of the response should be possible. If the modal
method gives coupled equations, i.e. B is non-diagonal, a combination of modal
truncation and the frequency response ;ethod requires the inversion of a complex
matrix of order j, where j is the number of retained modes and in general j << n,
but it may be difficult to decide upon an optimum value of j. Using the truncation
defined by equation (9), the truncated form of equation (3) is

T iwt

G* + B* §* + g¥ q* = Z* P e
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where B* = Z*‘T C Z* and §* is the diagonal matrix containing . ? 2, eeee

w.2. From the frequency response method

where N = Q* - w? I + iw B¥, I is the identity matrix and N, g* and B* are

of order j x j.

Response Spectrum Methods

The displacement at degree of freedom s 1is [from equation (2)].

s = ! Zsr
r

q.(t) . (11)
As each coordinate qr is a different function of time, determination of the
maximum value of uS requires evaluation of each significant coordinate qr for

a large number of values of t. Now

v
us(max) < Il oz, (max) | (12)
r
where qr(max) is the maximum value of qr(t). A simple upper bound is obtained if
the equals sign in equation (12) is used. The value of qr(max) can be determined
from a response spectrum . For a single applied force pj(t) applied at coordinate

Jj, the equation for the rth mode is

. . _
q + 2y, e q +aeaq = Zir pj(t) (13)
The equation of motion for a single~degree-of-freedom system of mass m, which is

subjected to a force Pof(t), is

4 > 2 —
X+ 2yw X + w *x = Pof(t)/m (14)
A response spectrum shows the variation of the dynamic magnification factor (DMF),
k x(max)/PO, where x(max) is the maximum displacement of the mass m, PO is the
maximum value of the force Pof(t), k is the stiffness and wnz = k/m, with a
period or frequency ratio, e.g. the ratio of some characteristic time (duration or
rise time) of f(t), To’ to the period Tn (= 2n/wn) for a specified value of the
damping ratio y. Comparing equations (13) and (14) and assuming that pj(t) =
Pof(t), qr(max) can be found from the response spectrum, associated with f(t) and
Y. by multiplying the DMF, corresponding to To/Tr’ where Tr = 2n/wr, by Pozjr/mrz'

Thus using the upper bound as an approximation,
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V4 Z.
_ srjr
u (max) = P_ rZ ————mrz (DVF) (15)

where (DMF)F is obtained from a response spectrum for force f(t) and damping ratio

T .
Y at o/Tr

The upper bound approximation may seriously overestimate the maximum response for
complex excitations, particularly earthquakes, as the underlying assumption - that
all coordinates a. reach their maximum at the same time ~ is not true. An
alternative, empirical expression, which is based on the square root of the sum of

the squares (SRSS), is

us(max) = [ ] {Zsr qr(max)}2 ]1/2 (16)

r

Equation (16) is not a bound and thus may underestimate the maximum response.

Other approximations are based on combinations of the upper bound expression (12)
and the SRSS value (16). When two natural frequencies of a structure are close
together, the response may exhibit beating phenomena; in such cases maxima are very
sensitive to the level of damping and use of equations (12) or (16) seriously over-
estimates the combined response from these two closely coupled modes. Expressions
exist which allow for modal damping values when combining contributions from two
closely spaced modes and can be used in conjunction with equation (16) for the
remaining modes [7,8]. Anagnostopoulos [9] has tested the various methods of
combining response spectrum values. He subjected finite element models of three
offshore platforms to each of thirty earthquake acceleration records and determined
various response quantities. For each method he obtained mean errors in maximum
response and their standard deviations (these are means of several hundred values).
For horizontal excitations for which the natural frequencies of the responding modes
are well separated the SRSS method, equation (16), gives the best results, but for
vertical excitations some closely spaced frequencies exist and this should be

allowed: for by using a modified form to combine response spectrum values.
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CHAPTER 7

THE FINITE ELEMENT TECHNIQUE
by

C.A. Brebbia

1. Introduction
The finite element method is an approximate method of analysis which can be used

to solve complex structural problems.

In the analysis of structures the method can be applied in terms of displacements,
forces or both. In what follows we will only refer to the displacement finite

element technique which is the most popular for dynamic problems.

The method consists in taking the displacement measures at discrete points in the
body as the unknowns and defining the displacement field in terms of these discrete
variables. Once the discrete displacements are known, the strains are evaluated
from the strain-displacement relations and, finally, the stresses are determined

from the stress-strain relations.

Contrary to Rayleigh-Ritz and similar methods where the expressions for displace-
ment are applicable to the complete domain, finite element expressions only apply

on a part of the domain or 'element'.

In the displacement method, the application of the principle of virtual displace-
ments results in a set of simultaneous algebraic equations for the unknown nodal
displacements. Because of the large number of variables, the analysis is most

conveniently formulated in terms of matrix algebra.

The selected displacement fields satisfy the admissibility and completeness
conditions for the problem. As the number of elements increases we can obtain

convergence of certain parameters.

The stiffness and mass matrices for the structure are obtained by superposing the
contribution of the element stiffness and mass matrices at each node and the system
.load vector is generated in a similar way, i.e. by superposing the element force
vectors. The displacement boundary conditions are then enforced. These steps

result in a set of algebraic equations relating the displacement measures.
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L

Figure | Notation for force, stress and displacement.
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The various phases of the method are

1. Discretization of the body, i.e.selection of elements interconnected at
certain nodal points.

2. Evaluation of the element stiffness, mass and force matrices.
Assemblage of the stiffness mass and force matrices for the system of elements
and nodes (system equations) and introduction of displacement boundary
conditions.

4. Solution of the resulting system equations and calculation of strains and

stresses based on the nodal displacements.

2. The Principle of Virtual Displacements
Consider a body in equilibrium under loading bx, ven Bz and internal forces Oy
e sz. Now, visualize the body displaced from the equilibrium position and let

Su, 8v, 8w define the virtual displacements.

If the initial position is an equilibrium position, the first-order-work 6WE done

by the external forces, is equal to the first order work &W_ done by the internal

D
forces (stresses) during the virtual displacement:

GWE = GWD for arbitrary su, &v, &w. (1)
This equation is called the Principle of Virtual Displacement. It is an alternate
statement of the equilibrium conditions and it is independent of material behaviour
and magnitude of displacement, i.e. it is valid for non linear geometry and arbit-

rary material behaviour.

The three-dimensional form of (1) is,

f J I (oxésx + oydey + ozdez + Txstxy + Tydeyz + TXZGYXZ)dx dy dz
volume
= f f j (bx6u + bysv + bZSW)dx dy dz + { { (pXSu + pyév + pzdw) das (2)
volume SG

where S0 is the part of the boundary where forces are prescribed and Su where dis-
placements are given. (S = S, + Sg). We will assume that the displacements
identically satisfy the conditions on Su hence 6u = v = §w = O. §e and 8y are
the first-order strain increments due to the virtual displacements. They reduce

to,
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§e = EEE s Se - 2 y Se = 28w
X Ix y Ay 4 3z
(3)
oy _ B38u 38v s _ 3sv . adw s _ 38 . 38w
xy oy Tx sz T3z ay Yzx T %z 3x

for the geometrically linear case. We allow for dynamic behaviour by expressing

the body forces as
b »b —-pi, b +b -V, b +b - pW (4)
X NA Yy y z z

where bx, by ... are prescribed, p is the mass density and the dot notation

indicates differentiation with respect to time,

«“ 32

(M = 5= () (5)
Equation (4) expresses D'Alembert's principle.

The Principle of Virtual Displacements now takes the form,

I J J (6 86 + ... + T_ 8y ) d(vol.) + f f Jp(ﬁéu + VoV + wéw) d{vol.)
X X Xz 'XZ

= f f f (bxsu 4+ ...) d(vol.) + j f (Exéu + ...) ds (6)
and is valid for a given time 't'.

The principle takes a compact form when matrix notation is utilized. We let

c={0, 0 ...t}
~ x’ Ty zZX
SE = {Gex ceee 5sz} (7)
su = {6u, &v, 8w}, U = (U, ¥, W
p=1(ps Py P, b = {b,, b, b} .
This reduces equation (6) to,
T «T
f o se d(vol.) + f p u 8u d(vol.) = f bT Su d(vol.) + f pT su ds (8)
S

o
displacements is equivalent to the equilibrium

on the left hand side of (6) using Gauss theorem.
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Typical terms are (figure 2),

y2 30
] o 8¢ d(vol.) = J[G Gv] dx dz - f sv =¥ d(vol.) =
yy vy 3y
1
aoy
= g &v cos(n,y) dS - I §v —= d(vol.)
4 y Y 3y

(9)
[ TxyGny d(vol.) = 4 Txy (8v cos(n,x) + 6u cos(n,y))ds

3T 3t
- f ( B:y Sv + a;y Su) d(vol.)

Repeating for the other terms we obtain

J (cxéex + oee. szssz) d(vol.) =

§ [ (o 8 +T m+ 1T n)du+ (1t &+ o0m+1t n)év
X Xy zZX Xy y yz .
(10)

+ (1t &+ 1T m+ on) éw ] 4s -
zZX ¥z z

ch 3Tx arzx arx 30 T z
- [ - + Y + ————-] Su +[ s, ¥ + —32 §v
Ix qy 3z

+

asz aryz aoz ]
[ = oy tam sw d(vol.)

Finally, after substituting (10) into (6) we obtain

acx Brx 9T "
f [ [ — + Y —ZX b —ptilsu s (L.)8v + (...)8w ] d(vol.)
IX Ay 3z X

= ] [ (o2 +1. m+ 1t n-p)du+ (o) sv+ (o.0) 5W] ds (11)
X Xy zX X
S
o
The terms on the left hand side are the equilibrium equations for a three dimensional
body and those on the right the stress boundary conditions on S0 (on Su part of the

boundary we do not apply forces).

In this proof it was required that the displacements and stresses are continuous

and that the stresses are in equilibrium in the interior and on the surface of the
body.
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Note that when the strain-displacement relations and geometrical boundary conditions
are specified, the equations of equilibrium and the mechanical boundary conditions
can be deduced from (6). Conversely when the stress field equations are defined

we can deduce the geometric boundary conditions and strain-displacement equations

starting with (11).

3. Finite Element Discretization and Element Matrices

In the finite element method we consider the body to be divided into volume ele-
ments having finite dimensions and we select certain points on the interior and
exterior boundary surfaces. The volume elements are referred to as 'finite' ele-
ments since their dimensions are finite: the boundary points are called nodal points
or nodes. We number the elements and nodes and specify the element-node connect-
ivity by listing, for each element, the nodes associated with that element. A
typical discretization for a flat plate, either in plane stress or bending is shown
in Figure 3. We take the nodes at the corner of the elements on the middle surface

of the plate. One could also select additional nodes along the element boundaries.

The element connectivity table is shown in Figure 3. Note that the nodes have to
be listed in the same direction (clockwise or anticlockwise). It is irrelevant

which is the starting node.

The subdivision of the continuum into elements is the most critical step of the
method. A general procedure for sub-dividing the continuum does not exist. How-
ever, there are some guidelines which have evolved from experience with the method.
The most important are:
a) - Irregularly shaped elements, such as long thin rectangular and flat
triangles, should be avoided. Equilateral triangles and 'square' rectangles

give the most accurate results.

b) - More nodes are required for stress concentration zones (high stress

gradients) than for regions where the stresses vary smoothly).

c) - To evaluate the accuracy of the results it is advisable to solve the
same example with a finer grid. This will provide a measure of convergence.

In addition, one should always check statics.

Next, we define nodal displacement quantities. The number and choice of displace-
ment quantities is problem-dependent but they have to be at least the displacements
which satisfy the boundary conditions on Su' For plane stress we take the two in-~
plane displacement components. In plate bending,.we can work with the transverse
displacement and_the two. rotations.of,the normal to middle surface. For three

dimensional analysis we take as nodal displacement quantities the three displacement
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We will use two reference systems. When discussing a single element we express
nodal variables with reference to a local numbering system but when discussing

the assembly of elements we shall express them with reference to a global system.

For a triangular element as in figure 4, the numbers 1,2,3 refer to the local

system; n, n, ng instead refer to the global one (e.g. n, = 94, n, = 96, n, = 92).
The variable vector for a node i can then be written as
u u
= v or U = v (12)
~i ~n,
i
w w
i n,
1
local global

The elements of Ui or Un in (12) are the nodal unknowns.

The vector formed by the vectors of unknowns at the elements nodes will be called

Yy (4]
P or vy (13)
Wy
s
Vo
U w2

The superscript n denotes that the vector extends over all nodes of the element,
s is the number of nodes in the elements, Ue is called the element. nodal unknowns

vector.

Now we introduce expansions for the displacement over the element domain in terms

of a set of parameters, u

u = v = Aa (14)

where A contains prescribed functions (of x,y,z) and o contains the displacement
parameters for the element. ¢ and ge are related by evaluating (14) at the nodes

for the element. This leads to,

U = Ca (15)
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The order of o must be equal to or greater than the order of Ue' This discussion
is restricted to the case where C is square and non singular. Finally, inverting

(15) and substituting in (14) we obtain,
(18)

Instead of starting with (14), one could establish (16) directly by using inter-
polation functions. The procedure outlined above is the 'original' approach.
Employing interpolation functions is a subsequent innovation and is much more

convenient.

We now introduce the displacement expansions in the Principle of Virtual Displace-
ments (equation (8)), and obtain a set of algebraic equations relating the nodal
displacements and generalized nodal forces. In what follows, the steps are out-

lined and the expressions for the various element matrices are developed.

Let us restrict this discussion to linear elastic behaviour for which the stress-

strain relations can be expressed as,

¢ = De (17)

where D is a matrix of elastic constants. 9 is symmetric and positive definite for
a real material (9 degenerates to a positive semi-definite matrix if the material
is assumed to be incompressible). The form of 9 depends on the material, i.e.,
whether it is isotropic, orthotropic or anisotropic. Substituting for o, into (8)

we obtain

I GsT D e d(vol.) + f o 6uT u d(vol.) =

f 5uT 9 d(vol.) + f su p ds (18)

Since we are expanding the displacements only over one element domain, we must

write the Principle of Virtual displacements for the whole structure as,

T T ..
E {f 65 9 € d(vol.) + J e 63 E dvol.) 1} element n

e

T T -
{f 65 E d(vol.) + J 53 E a3 }element n

|
~

(19)
n
e

ng denotes the total number of elements.

Consider now the strains. Applying the strain-displacement relations to (16)

results in
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¢ = BY (20)

where B contains prescribed functions of the position coordinates. The stresses
are given by

¢ = DBU (21)
Since B is independent of displacements,
Se = E Gge (22)

Substituting the above relationships into (18) we obtain for an element

6UeT { J BT D B d(vol.) Ue + J.p GT G d(vol.) Ue 1 =
(23)
= GUeT { J GT b d(vol.) + f GT p ds }
b pl s ~ ~
o
or,
sSUT (kU +mU 3 = oUu ' ¢ (24)
~e <~ ~e ~ ~& e -
where
k = stiffness matrix = [ BT D B d(vol.)
m = mass matrix = f GT p G d(vol.)
f = consistent element force matrix = f GT b d(vol.) + f QT é ds
- s
o

Note that p contains the prescribed external surface forces. Hence the area
integral involves only the exterior position of the surface area for the element,
i.e. the interior surface area which is common for adjacent elements is not

considered.

With this notation the Principle of Virtual displacements takes the following

discretized form,

zsuT(k’U +mU) = ZsUTf (25)
~8 ~ ~e ~ ~e ~e ~

n n

e e

The critical step in the finite element displacement method is the selection of
displacement expansions, i.e., the form of g. If the displacement expansion
includes all possible rigid body displacements, all uniform strain states and if
displacement compatibility along the boundaries between elements is satisfied.

The finite element solution represents an upper bound on the total potential energy

and the solution will converge to the true solution as the mesh size is decreased.
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Inter-element compatibility requires that the assumed displacement field be con-
tinuous up to the derivative of one order lower than the highest derivative
appearing in the strain-displacement relations. For example for plane stress -
plane stress the strain displacements relations involves first order derivatives,
hence the functions themselves must be continuous on the inter-element boundaries.
For plate bending instead, the strain-displacement equations are second order,
therefore the first derivatives as well as the functions must be continuous

between element.

Most of the element formulations that have been developed are based on polynomial
expansions. To satisfy the requirements of rigid modes and constant strain states,
the expansion must be at least a complete polynomial of order equal to the highest
derivative occurring in the strain-displacement relations. For plane stress this
requires a first-order polynomial, for beam or plate bending, a complete second-
order polynomial is required. Additional terms are included to complete the

expansion, i.e. to obtain the necessary number of displacement parameters.

Convergence of certain parameters (for instance potential energy to static cases,
eigenvalues in free vibration) can be ensured when inter-element compatibility is
satisfied. As the discretization is refined the parameter (potential energy or
eigenvalue) will converge to the true solution, provided that all uniform strain
states can be represented by the expansion. However, the convergence will be mono-
tonic only if the discretization comprises a minimising sequence. This means that
by suitably specializing the nodal displacements for the n'th discretization we
must be able to reproduce the displacement patterns corresponding to the n-1
previous discretization. In order to satisfy this requirement, the n'th discret-
ization must contain all the previous nodes and element sides and the element dis-
placement expansions must be invariant (i.e. their form must not depend on the
orientation or dimensions of the element). As an illustration consider figure 5.
Patterns 1 and 2 comprise one minimising sequence while 3 and 4 comprise another

minimising sequence since they contain a different set of nodes.

In some cases, particularly for plate bending and shell elements, it is quite
difficult to satisfy inter-element compatibility without resorting to rather complex
displacement expansions. Formulations which violate inter-element compatibility

are used and they exhibit good convergence in comparison with compatible models. A
non-compatible element may converge to the true solution if all the body modes and
uniform strain states are included. However, non-compatible elements do not provide

bounds, i.e. we do not know whether the potential energy is below or above.
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Example 1

To illustrate the generation of the displacement expansion and element matrices
consider the prismatic beam element shown in Figure 6. The choice of nodal

variables is v and 6, and it follows that Ue is at least 1 x 4.
U =1{v, 6 v.6_ ...} (a)

This discussion is restricted to negligible transverse shear deformation. The
extensional strain varies linearly through the depth and 6 is equal to the

rotation of the tangent.

d?w dw
g = ¥
! dax

(b)

Since € involves the second derivative, the displacement expansion must contain a
complete quadratic in order to be able to represent rigid body motion and constant

strain. We write

_ 2 3 _
\'4 —al+&2X+33X +04X =
%1
= [1 x x? x%] o, = Aa (c)
%3
%y

The @« may be expressed in function of the generalized displacements \ Thus,

v1 1 o] ¢] 0 al
61 [¢] 1 6] ] a2
= 2 3
V2 1 2 % '3 01.3
2
o, 0 1 28 38 o, (d)
of Ue = Coa . Next we invert (d)
-1
¢ = 9 Ue
W (e)
= 1 0 0 o] vl
o] 1 6] o] el
3 2 3 1
- = --= - - = v
22 [ 22 2 2
2 1 2 1
[ [, P
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Substituting @ in (c) we obtain the final result.

= = £
v ¢y 81Vy * 8% + gV, v 848, (£)
X\ 2 X, 3 x?  x?
where gl = [ 1~ 3(;) + Z(E) ]y g2 = [ X - 2 E + F ]
- Xy2 _ 5(Xys _po_xrx?
g, = [3(9) 2(7°] g, =1 -7 +37 ]

gi are the interpolation functions.

The strain expansion is obtained by substituting for w in (b).

2 2
£ ="y gxg z diz (6) Ye = B U
‘ (g)
B =-2z {- e + 1ex .- + &x & _ 1 -2 + & }
M [ A 3 [ 3 [

Considering only normal stresses, the stress-strain relations o = D €, reduce to,

g = E e (h)

We can now generate the element matrices.

(i) Stiffness Matrix

5 = f §T 9 ? d(vol.) = %% 12 6% -12 62 (i)
4% -6% 232
12 -6%
sym. 44,2

This result is the 'exact' stiffness matrix for a prismatic beam. The agreement
is due to the expansion employed. One can readily show that the exact homogeneous

solution of the governing equations for a prismatic element is a cubic polynomial.

(ii) Mass Matrix

pAR
420

m = J o GT G d(vol.) =

156 228 54 -13%
442 138 =382

156  -22% (3)

sym. 402
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(iii) Consistent Element Nodal Force Matrix for the case of only distributed

transverse loading p(x) is

[}
T
f = f G pl(x) dx (k)
o
_1a%2 Z3
or Py p(1-3x? + 2x?)
Pl g % pa(1-2x% + x?) _
= & f dx
22 _ oy3
Py, o p(3x 2x*)
2 33
Pse pa(-x? + x?)

where X = x/%.

The form of f will depend on how p(x) varies. If p is constant we obtain, after

integration,

pL

Application Let us consider a simply supported beam represented by only one
element. Hence v, = v, = 0 are the displacement boundary conditions to be satis-

fied and the element matrices in the absence of external forces become,

R
[ et
+
=
P
1]
o

or,

where w is the circular frequency and i = v/-1. Hence (&) becomes,

EI 4 2 pAw2y? 4 -3 3 0 (m)
2 420




Figure 7 Beam Composed of Two Elements

Element nNoiesn

1 "2 3
@ |14 ]2
@ |34 |1
B 3|6 |4
@ 516 {3

Figure 8 Four Elements Body
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pALY w2

and defining A 220 E1 the system of equation (m) has a solution if the

determinant is zero, i.e.

4-3A 2+3A
= 0 (n)
243X 4-4N
2 pAL"w? .
Thus X = 5 or 6 and the value of 57 = 120 or 2520, which compare reason-

ably well with the exact values of 97.41 and 1559. In order to improve on our
approximation we can take two elements and assemble them together. This is done
in the next example to give some background of how to obtain the system equations

of a structure.

Example 2.

Consider now the beam represented by two elements of equal length (Figure 7).

For element (z) we have

D @, @ @

©

(a)

and for element @

&(:) g(:)+ T(:) Q(:) = f(:) ‘ (b)

These equations can be assembled by using the compatibility (local node 2 of beam

(:) is the same as node 1 of beam (:) ) and equilibrium conditions,

Q, = Q2@+Ql@, Q = .@

2

M = M2® + Ml@ N M3 = M2@

©

The above relationships imply that the coefficients of the mass and stiffness
element matrices can now be written as,

equilibrium equation

-
which corresponds to Ql - o o o o multiplied vl 1
by
Ml > o o o o 91
Q2 - o oflo o|o o v2
M
27 © °9j° °j° ©° e2 or their
Q, > o 0 o o v acceler-
3 3 .
M, -+ o O o © ] ation (d)
3 l 3
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This gives,

"EI 12 6% -12 62 0 O W (v,
El 1
482 -6% 222 0 0] 91 +
24 0 -12 6% v, L
2 _ 2
8% 64 2% 1 92
sym. 12 -6% vy (e)
2
L a8 i Lea,
- a 7 -~
pA% 156 224 54 -13% 0 0 vl Q
420 .
2 _2g2 kY
49 13 3% 0 0 61 M1
_ . _
312 o} 54 13% A Q,
2 a2 o
8% 13% 3% 92 M2
156 -22% Va Q3
492 ) M
L 1% "
Finally we can impose the displacement boundary conditions v1 = vy = 0 and assume

the right hand side of (e) is zero, i.e. the vibrations are free. We obtain the

following system of equations

IR
(4-4x)22 (-6-121) % (2+31) 82 o] 8, 0
(24-31221)% 0 (6+131) 2 v, 0

= 4
(8-8x)22 (2+43x1)82 ﬁ o, 0

sym. (4-41) 22 04 0 (f)
- - -~ 7
pAR*w?

where A= 220 EL

The solution of the system of equations (f) gives the following eigenvalues,

pAL"w?
EI

>1
1
]

98.18, 1920, 12130, 40320
(L = 2%, total length of the beam). The exact solution for the beam gives,

X = 97.41, 1559, 7890, 24940 .
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4. System Equations

In order to obtain the global equilibrium equations for a body formed by different
elements we have to assemble the element matrices and apply the boundary conditions,
One first expands the element nodal unknowns vector Ue in terms of the vector of

nodal displacements Un , now deferred to the global numbering

4,
1

s tu = Y
i 2

(26)
i = 1,2, ... s
where s is the number of nodes in the element and ni their number referred to the
complete system. We partition k, m and f for the element consistently with the
partitioning of Ue' they are understood to be resulting from a derivation based

on several unknowns for node, i.e. based on Ue'

k ={k, .}

~ ij

m = { mij} (27)
f =1 fi } i,j =1,2 5

With this notation the terms in (25) take the form

T S T
wekue:szn{Zk..Un)
i=1 iog=1 My
s s
T T
8U_ mUe=ZsUn{Zmi.n} (28)
=1 M og=1 My
s
sul f =[5UT £
~e ~ . ~T1. ~1
i=1 i
If, in the derivation of the element matrices, the unknowns are referred to the
local frame rather than the basic frame, it is necessary to transform the nodal
unknowns, gn , 6U in (28) from the element frame to the basic frame. We use

: ~n.
1 1

an asterisk to indicate the global frame and obtain
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where R contains the direction cosines for the local direction with respect to

the global matrices. Equation (28) can now be written,
s s
sulku = I oeurT O] krouxo)
~e o~ i=1 "My gop T
T S T, %
U '"mU = |} sUx’ 1 ) m¥, Ux. ] (30)
~e o~ e i=1 My g=1 THTM
s
su Tl = ] sux*T g
Ze ~n.
i=1 1
where
k¥, = RT k.. R
~ij ~ ~ij ~
m*. = R.m. . (31)
~1j ~ ~1i3 ~
% = RT f.
~i ~ =i
The governing equations for the whole body can be written as,
T b T
8 = 7o
Doyl oy, vn gy ey, f (32)
e e

If N denotes the total number of nodes we can define a system nodal unknown vector.
(In what follows we assume Un are referred to the global frame, that is we drop

the asterisk for simplicity).’

~l, 92 .+ gN ) (33)

Expanding (32) by summing the contribution of the elements incident on each node,

we have,
T - T
U" {KU+MU 1} = 8U F (34)
or for arbitrary 6U,
KU+MU = F (35)
The partitioned form of (35) is
Kpakio o lf_wT U)ol Yt e e e My Yy il
Ror¥oo - - - By Ys MoiMop + o - Moy Y, ={F
.M
~NN | QN EN (36)
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We assemble K, M and F in partitioned form working with successive elements. The

contribution for an element is listed below.

InF
f. in row 1
=i
i=1,2 s
In K (37)
A in row i, column j
»..lJ
i,j =1,2 s
In M
m, . in row i, column j
~ij

i,j=1,2 ... s.

These operations are carried out for all the elements. Since m and k are
symmetrical for our example, the M and K matrices of (35) are going to be

symmetrical and only the coefficients on and above the diagonal need to be stored.

Example 3

Let us consider a body composed of only 4 triangular elements (Figure 8). We

assume to know the element matrices k, m, f. For instance for the element (2)

the matrices can be written

Element Nodes 2 4 6
O Mo g
1 1 4 2 @ ®
2 3 4 1 @ @
3 3 6 4 ¥
4 5 6 3 1 3 5
X + ')

Figure 8 Four Elements Body

D@9 (@), [.9.0.0] i@ . [©
52@ 52%) k3 gz@D Tzc? Tzc? Tzc? 92@3 59 (a)
KaT 53@ 533J 93@J _Tsc? Ts@ T:ac?j 93@ 53(9
E gn +m gn = f for element 2, where k and m are symmetric.

The unknowns_in_ the above equation _are referred to the local numbering system. For

the global nodal unknowns numbering system we can write,



We are interested in superimposing the

® .,

~33

] ! L

® ,®
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m

~22

@ ,@

~32

effects of all the elements in order to

form the system matrices for the whole body.

123
Ta@ ) ~1

(b)

If the structure has 6 nodes we will

finally obtain a (6d x 6d) matrix where d are the number of degrees of freedom per

node. A typical element like (:)

will have the ki., mij coefficients plus the 3

J

right hand side terms distributed in the global matrix, as follows.

MO,

0.0 .

and F =

~33 ~31 32

K=1kyx . ki1 }f@ - ‘
MON N MON .
~23 ~21 ~22

and similarly for Mij

coefficients.

Once all the elements have been superimposed

for M and K look like

©

f(:>

~1

RO,

~2

(c)

we will find that the global matrices

| ¢ BAND > 1
e ! ° . ® . .
1
4=, .
[ ] [ ] L . ) .
T = =
° . o ! ° . .
1
- ]
. ° ° o | . [
e — —
5 . ° . o ! e
1
. . ° . (] [}

diagonal
P £

(d)
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where e represents a filled store area and *~ an empty one. This matrix is
symmetric and banded, .the band equal to 4 x ". Note that the band is proportional
to the largest difference between nodes in the same element. Because of symmetry

one needs only to store the diagonal and upper diagonal elements.

5. Solution

The governing equations for the unrestrained case are given by

<

=i
+

2R

U= (39)

The system mass matrix % is positive definite but 5 is singular due to the rigid
body terms. If rigid body motion of the system is suppressed, 5 becomes positive
definite. In what follows we consider only the restrained case and rewrite the
modified (i.e. with the displacement boundary conditions imposed) equations in the

same way as (38)* to avoid proliferation of notation.

Let us first consider the free vibration problems, i.e. when F = O. Equation (38)

reduces to,

U+KU = 0 (39)

=R

The form of this equation suggests that we express the solutions

U = elmt

¢ N

(39)

where w is the circular frequency and z defines the displacement pattern. Sub-

stituting for U transforms (39) to
(K-aM 2z = 0 (41)

The determination of the values of A gives the eigenvalues of the system. In
general, there are n values of A which satisfy (41). Also, all n values are positive

when both K and M are positive definite, which is the case here.

Let Xi = miz denote an eigenvalue of (41) and =z, the corresponding non-trivial

solution. By definition,

Kz, = A, Mz, (42)

* although their dimensions are now different as the number of degrees of freedom

has been reduced after applying the known displacement boundary conditions.
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Each eigenvector contains an arbitrary constant which is generally evaluated by

normalizing ¢ with respect to M, i.e. by requiring
z, Mz, = 1 (43)
where zi is the normalized value of ¢i.

T
Premultiplying the normalized version of (42) by zi we have,

z,TK Z . = A. (44)
~i o~ =i i
Due to orthogonality we have
T X .
z, Mz, = 0 for i # j (45)
~j ~ =i
z T K z = 0 for i # j
2y 2% < J

Equations (45) express the orthogonality relationship among the natural modes.

The results for the free vibration case are utilised to generate the solution for

applied loading. We express the solution as a linear combination of s eigenvectors.

(e
i

s
Iooap oz (48)
i=1

where s ¢ n and qi = qi(t) can be interpreted as generalized coordinates.
Substituting U into (38) we have,

S
I (@ Mz, +q Kz) = F (47)

Premultiplying (50) by ij and noting the orthogonality relations gives s

uncoupled differential equations

F. = z, F (48)

One can interpret Fj as the generalized force corresponding to qj, i.e. to the j'th

mode. the static solution is

(49)
static
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We number the eigenvalues according to the increase magnitude v, N w,y <.ng mnz.
Equation (49) shows that the contribution of the higher modes decreases with
increasing mode number, assuming the generalized modal forces are of the same order
of magnitude. The ratio (E‘) Jw? is called the 'participation factor' for

static
the j'th mode.

The results for the static case suggest that we express qj and F‘j as,

(m)

F. = F, £(t)
J J
Fj(m) _ (50)
q., = 2 q.
W,
J 5 J
where Fj(m) represents the maximum values of F. and Fj(m)/m2 can be interpreted

as a 'quasi-static' participation factor. We can now write (48) as

d2

a.) +w.2q, = w2 f(t) 51
dtz (qJ J qJ J ( ( )
and the general solution is
dq.
q. = . ’ cos w.t + 1 |3 sin w.t +
% % t=0 L .
B B (52)
t
+ W, J f(£) sin w,(t - £)dg
BN ] J
o

where £ is a dummy integration variable. The first two terms, which vanish if the

system is initially at rest, represent the free vibration solution.

We can now evaluate U for any given time from (46) which gives

S (m)
Ult) = 7 L z. q.(t) (53)

The essential difficulty with model superposition is the decision of how many
generalized coordinates — s - one should take. The computation required for s = n
is usually prohibitive when n is large and the interpretation of the higher modes
is difficult since the higher fregencies tend to be closely spaced. In selecting
which modes to include for a particular loading, one should compare the modal

participation factors.
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CHAPTER 8

TWO DIMENSIONAL AND PLATE BENDING APPLICATIONS
by

R.R. Wilson

1. Introduction

In the previous chapter the principles of the finite element displacement method
as applied to vibration problems were presented. This discussion is now extended
to an examination of the factors which influence the choice of a displacement
function for an element, with the particular cases of in-plane and transverse
vibration of plates being considered. Different displacement functions are used
to derive a number of elements, and the results which these different elements
give when applied to sample problems compared. Finally, it is shown how in-plane
plate elements, transverse plate elements and beam elements can be combined

together to analyse a composite beam and plate structure.

The basis of the finite element displacement method is the representation of the
displacement field throughout an element in terms of the value of the displacement
at a discrete number of nodal points. The number of parameters used in specifying

the displacement field must equal the total number of nodal variables.

Consider the situation where, because of limited computer storage, a fixed number
of degrees of freedom is available for an analysis. We are then faced with the
choice of using a large number of elements each with a displacement field based on
a small number of parameters, or using a smaller number of elements each with dis-
placement fields involving more unknowns. It is usually desirable to select a
compromise between the two extremes of a very few high order elements and a large

number of low order elements.

When very high order elements are used some of the advantages of the finite element
method are lost. For a complex structure a large number of elements is required

to represent the geometry, with the different structural components represented by
elements with different lengths, thicknesses, material properties etc. It can
often be the need to represent the geometry of a structure accurately that deter-
mines the number of elements used rather than a requirement for a high order dis-
placement field to match the stress variation. In these cases when high order

elements are used, some of the degrees of freedom are "wasted".
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On the other hand, if the displacement field is represented by a very low order
function, then the conditions required for convergence to the true solution as the
mesh is refined may not be satisfied. Possibly the most suitable elements for
inclusion in a general analysis package are those which have displacement functions

which just satisfy the convergence criteria.

Once the displacement field for an element has been selected, there is a further
choice. The unknowns determining the displacement function can be evaluated in
terms of a large number of variables at each of a small number of nodes, or more

nodes can be used, each with fewer freedoms.

A difficulty can arise when a high order displacement function is used with a
small number of nodes. In order that the parameters defining the displacement
fields can be evaluated, high order derivatives of the displacement are used as

nodal variables.

This situation occurs most frequently in the analysis of shells, but consider for
example a beam element, in which the second derivative of the transverse dis-
placement is used as a nodal variable. If we use this element to analyse a stepped
beam then the second derivative nodal variable will enforce continuity of the
bending stress across the change in section. This imposes a theoretical constraint

on the beam which is not there in practice.

To overcome this it is possible to uncouple this freedom and solve for the two
values of the derivative on either side of the discontinuity. However this comp-
licates the analysis and it is protably preferable to avoid the difficulty by
forming an element with additional nodes when a high order displacement function

is to be used.

The shape of an element also determines the number of nodes. With 3 nodes for a
triangular element and 4 nodes for a rectangular element, the element shape can be
defined in terms of the nodal coordinates. Similarly, curved elements are more
easily defined when they have at least one node in the middle of each side of the

element in addition to the corner nodes.

The shape of a structure often determines the elements to be used. If an irregu-
larly shaped plate is to be analysed, it is probably easiest to use triangular
plate elements, but if a rectangular plate is being considered the data prep-
aration is simplest if rectangular elements are used. In the following sections

different formulations for rectangular plate elements will be examined.
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2. In-plane Plate Elements

The strains & produced by in-plane stretching of a plate are given by

e = € = 3u/ax ) (1)
~ X

€ av/3

v y

. du , av

Xy 3y ax

where u and v are the displacements parallel to the x- and y-axes respectively.

The corresponding stresses ¢ are given by

o = De (2)
E
where D = 1752 1 v 0 , (3)
v 1 6]
1-v
© ° =

where E is Young's modulus and v is Poisson's ratio.

Since the strains consist only of the first order derivatives, to ensure inter-
element compatibility it is necessary only that the displacements u and v are
continuous between elements. We can define a possible displacement field through-

out an element by the expression

u = u (4)
v
where
U = ey 40X+ 0gy 4 O Xy
(5)
and Vo= oog 40X 4 0oy 4 agXy
i.e. u = Ac (6)
where é = 1 X y Xy 0 0 0 0
0 0 0 0 1 x y Xy (7)
and

a = oy (8)
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y,v
\
—(o,b) (a,b)
2 4
b
i i 3
(o0,0) (a,0)
a
Figure 1 Plate Element
y
(1,2) (2,2)
a,n (2,1

Figure 2 Node Numbering for use with Interpolation

TN
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If we consider a four noded rectangular element as shown in Figure 1, then the
eight parameters o, can be evaluated in terms of the value of the two displacements

u and v at each of the four nodes.

We have ge = [ uy 1 = [ 1 0 0 0 0] 0 0 0 W [ al-
2 0 0 [¢] 0 1 0 0 ¢} o5
u, 1 0 b 0 0 0 0 0 ag
v, 0] 0 0] 0 1 0 b 0] oy
U, 1 a 0 0 0 ¢} 0 0 g
vy 0 0 0 0 1 a 0 0 g
u, 1 a b ab 0 0 0 0 o
7 0 0 0 0 1 a b ab ag
L L I
(9)

i.e. ge = 9 a (10)
-1
¢ - 9 ge (1)

Substituting in equation (6) gives

=
1]

Q2
c

where G = AC . (13)

Writing equation (12) in full,

u = (1—x)(1—y)ul + (l—x)yu2 + x(l—y)u3 + xXyu, (14)
v o= (l—x)(l—y)v1 + (1—x)yv2 + x(l—y)v3 + XYV, (15)
z - X 5 - X
where x = 3 and y = 5

If we number the nodes as shown in Figure 2, then equation (14) may be written as

u = Hl(;)Hl(§)ull + Hl(i)H2(§)u12 + H2(§)Hl(§)u21 + H2(§)H2(§)u22 (16)
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Hi(i)Hj(i)uij (17)

where Hl(§) = 1-x and Hz(i) = x (18)

The Hl(i), HZ(;) are examples of interpolation polynomials. They have the

properties that

1]
fun

Hl(O) Hz(l) (19)

and H. (1)

1 H,(0) = © (20)

2

Once equation (12) has been formed the matrix B can be calculated as described in

the previous chapter from

k = f gT D B d(vol) (21)
T
mo= J G 0 G d(vol) (22)

The resultant element matrices are given in Appendix 1.

We shall now consider a second element, based on a higher order displacement
function. If we have nodal variables, u, 2 , u , EX, v
ax y 9x’ dy

total of 24 nodal variables in the element. The displacement field throughout

then there are a

the element could be defined in terms of polynomials as in equation (5) but with
24 parameters ui. Instead of this, let us express the displacement throughout the
element directly in terms of the nodal variables by using a new set of interpol-

ation polynomials.

2 2
We have u = ) T [H..(x) H..(Y)u. . (23)
izl je1 0i 0J ij
fHLR H . EY v H LG ES )
11 0j 3% .. 0i ij ..
ij ij
and similarly for v,
with H. (X)) = L (a® - 3ax? + 2x3%)
01 a’
H(X) = 5 (3ax? - 2x?)
02 a’
> l 2 2 3
H . (x) = =% (a%x - 2ax?® + x?)
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X _ 1 2 3
le(x) = 7 (—ax? + x?)

The properties possessed by these polynomials are summarized in Table 1.

X =0 x=1 Xx=0 x=1
9H
- 01, -~
¢]
HOl(x) 1 0 P (x) 0
9H
- 02—
H.,,(x) 0 1 (x) 0 0
02 =
3x
aH
H, (%) 0 0 3 1 0
11 =
X
9H
H, ,(x) 0 0 125 0 1
12 ~
9X
Table 1 Interpolation Polynomials

The element matrices can now be calculated as before.

3. In-plane Vibration of Plates

We have derived two finite elements for the in-plane vibration of plates; the
first has 2 variables at each node and element matrices of order 8 x 8, and the

second has 6 variables at each node and element matrices of order 24 x 24.

The equations of motion are [1],

3%u 3%u 32v (1-v2%) 3%u

wz * %(1-v) 3y + %(1+v) axay p B at? (24)
3%v  3%v 3%u (1-v?) 3%v

Yy(eq_ v 4 _ 1-v7)

%(1-v) axz *ayr * %(1+v) 3xXdy e E  at?

For the boundary conditions that u = O on the sides parallel to the x-axis and
v = 0 on the sides parallel to the y-axis, the equations are satisfied by
nm iwt

u A cos o7 X sin — e
B c a v
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v = B sin 2 xcos Xy elot (25)
c d
where ¢ and d are the length and breadth of the plate and m and n are integers.
The value of w is found by equating the determinant of the coefficients A and B to
zero and is given by

2 2 2
w? = Z%) [ + % ][(3-\)) t (1+v)] (26)

3

l

[N

c

Because it has many fewer variables at each node, it is possible to use a much
finer mesh with the element based on the 1st order polynomial than with the element

based on the second order polynomial.

The problem was solved with the lst element using meshes a — f, as shown in Figure
3, and using meshes a - ¢ with the 2nd element. Figure 4 shows a comparison of
the values calculated for the lowest five natural frequencies of a plate using each
of the elements. The values are plotted against the final number of degrees of
freedom since this is equal to the size of the system matrices and determines the

time taken to solve the equations.

It can be seen that both elements give results which converge towards the exact
solution from above. This is to be expected since they both satisfy the criteria
for uniform convergence. It should be noted however that although the convergence
was monotonic we were not guaranteed this since, for example, mesh b is not a
refinement of mesh a. The element with the higher order displacement function
gives more accurate answers for a given number of degrees of freedom. Thus if we

have a simple in-plane plate vibration problem, this would appear to be the better

element to use.

4. Plate Bending Elements

We shall now look at some of the elements which have been derived for the analysis
of transverse vibration of plates. A total of seven elements will be introduced

to show the range of formulations possible.

The first element (element a) we shall consider is based on a 12 term polynomial

2 for the transverse displacement

_ 3
W= 0+ aoX e+ 0oy (27)

The terms included in this expression are



The 12 unknowns are evaluated

each of the four nodes at the

in terms of three nodal variables w, Py and

corners of the rectangle.
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Xy y

w

au

(28)

at
Yy

Table 2 summarizes the number of elements, number of nodes and number of degrees

of freedom for each mesh.

The initial and final degrees of freedom refer to the

number of degrees of freedom before and after the boundary conditions are applied .

It is possible to formulate an element with w,

aw
— and
X n

Number of Number of Initial no. Final number
Mesh
elements nodes of degrees of degrees
of freedom of freedom
First a 4 9 18 6
element b 9 16 32 16
c 16 25 50 30
d 25 36 72 48
e 36 49 98 70
b 49 64 128 96
Second a 4 9 54 30
element b 9 16 96 64
c 16 25 150 110
Table 2 Finite Element Meshes

3% as nodal variables by

using interpolation polynomials, as in equation (23). The displacement function

for this element, however, does not include the term xy, and so the element is not

able to represent a state of constant twist —— .

3%w
3xy

conditions required to ensure convergence as the mesh is refined.

It thus does not satisfy the

An element (element b) which does satisfy the convergence criteria can be derived

by introducing an additional nodal variable

can be written in terms of the interpolation polynomials,

32w
IXy

(3]

The displacement function
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woay) = 1T [, G0 Hy (g w B0 L () (5)
i3
aw 3%w
+ Hy, (x) Hlj(y) (3§)ij + Hy, (%) Hlj(y) [ Ezgy]ij] (29)

This element has 4 nodal variables at each of the 4 nodes, and the displacement

function can be written as a polynomial with the following 16 terms

1
X Yy
x? xy y?
x? x 2y xy? y? (30)
X3y nyZ xy3
x3y2 X2y3
x3y3
1
X y
x? Xy y?
x3 xzy XyZ y3
x" xﬁy xy3 y‘Q
XS x'éy x3y2 x2y3 xy‘Q y5
XG xsy Xuyz x2y'0 xyS yG
x7 x‘oy3 XSy'Q y7
x5y3 X3y5
X5y3 x3y5

Finally it is possible to derive an element based on smooth surface interpolation
rather than the linear interpolation polynomials. This element [S] has the nodal
variables w, §¥ and %% giving‘a total of 12 variables in the displacement

function. The displacement field is obtained by dividing the rectangle into four

triangular areas and using a separate expansion for each.

It will have become apparent that there are many ways of deriving a rectangular
plate element. We have considered seven and have by no means exhausted the
possibilities. Four of the elements we have mentioned have nodal variable w, %ﬂ
?w i expansion. These all give different results
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for the same mesh and one of the elements does not even converge to the true
solution as the mesh is refined. Clearly, therefore, the choice of a displacement

function for an element requires some care.

5. Transverse Vibration of Plates

We shall use three of the elements to calculate the natural frequencies of two
plates, a simply supported square plate and a rectangular clamped plate. The
elements used are element a which is based on the simple 12 term polynomial,
element b which has the 16 term displacement field and element c which is

based on an approximation to the 16 term polynomial.

A variation of this element (element c¢) can be obtained by expressing the twist
2

variable at each node in terms of the slopes at the adjacent nodes. This

9°w
3x9y
gives 4 constraint equations reducing the original 16 degrees of freedom to 12. It
is not possible to write the displacement field explicitly as a simple polynomial

but it does include the term xy and so the element still can represent constant

twist conditions. The nodal variables in this simplified element are w, %%, %% .
32w

A fourth element can be obtained by including the additional nodal variables PY)
2 2

and %—% as well as and using higher order interpolation polynomials [3].

]
axay
We now have 6 variables at each node and the equivalent of a 24 degree of freedom

polynomial.

Instead of increasing the number of nodal variables, the number of nodes can be
increased to allow higher order displacement functions to be used [4], with the
nodal variables, w, %% and %% . The first of these elements has one mid-side node
giving a total of 24 degrees of freedom with a polynomial expansion having the

terms

1
X y
x? Xy y?
x? xy xy? y? (31)
x* x3y xy? v
x® x'y x3y? x2y? xy" ys
x*y x'y? x*y* xy®

With 2 additional nodes on each side, the element has 36 degrees of freedom. 1In

this case the terms in the polynomial are obtained from element b by removing the
twist term.
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All three elements satisfy the conditions which ensure convergence as the mesh is
refined. Only element b however satisfies the additional condition which ensures
that the convergence is uniform; it is the only element of the three for which

the normal slope between elements is continuous.

Figure 5 shows the results obtained for the natural frequencies of a simply
supported plate using the different elements. It can be seen that for all three
elements, the results tend to converge towards the exact values [6] as the mesh is

refined.

Figure 6 shows the results obtained for the natural frequencies of a clamped rect-
angular plate. These are compared with the values obtained using a Rayleigh-Ritz

solution {7] as described in Chapter 6.

In both examples all the elements converge as the mesh is refined. However only
the fully-conforming element, element b converges monotonically, consistently
giving an upper bound to the frequencies. It can be seen that, although they have
the same order of displacement function, element a and element ¢ give different

answers for the same mesh.

6. Combination of Plate and Beam Elements

When it is necessary to select elements for the analysis of a complex structure,
then considerations other than the behaviour in test examples such as those dis-

cussed in the previous sections are important.

For instance even though it has a better rate of convergence in the examples
considered, the in-plane element based on the 2nd order interpolation polynomial
is not suitable for most applications. It can represent a rapid variation of the
in-plane displacement accurately with few degrees of freedom. However in practice

the in-plane displacements do not usually wvary in this complex way.

The in-plane element based on the 1st order interpolation polynomial will usually
give satisfactory answers for the type of problem encountered. In addition since
it is possible to use very many more elements, cut-outs and projections in the

plates can be more accurately represented with this element.

Similar considerations favour choice of one of the lower order plate bending ele-
ments. Thus if we wish a plate element for combined bending and stretching then

one possibility would be to have 20 x 20 ‘element matrices with nodal variables u,
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2w
3x
1st order interpolation polynomial with the transverse components corresponding

v, w, and %% . The in-plane components of the elements could be based on the

to element a, element ¢ or the element based on smooth surface interpolation.

This element has no coupling between the in-plane and transverse displacements

and the corresponding portion of the element matrices is filled with zeros. Where

there is coupling, for example in a curved plate, then the process can be repeated

as before but with the assumed fields for the two displacements being used together

in deriving the element matrices.

A suitable beam element for use with the above plate element as described can be
obtained by assuming the following displacement functions for an element parallel

to the x-axis.

— 2 3
W= g+ X+ agx? 4o X
Vo= o+ oagX + u7x2 + a8x3 (33)
U= o+ e X
6 = all + alzx

We have 12 parameters which can be evaluated in terms of the six nodal variables,
W v
'ax T 7 Bx

are used for the two transverse displacements. These parts of the element matrices

, u, 8 at each end of the element. Cubic displacement functions

are derived as described in Chapter 7. Linear functions are used to represent the
extension and twisting of the beams. The strain energy expression corresponding
to each of these two displacements involves only the first order derivatives and

so a linear displacement function is sufficient to give convergence.

The complete element mass and stiffness matrices for this beam element are given

in Appendix 2. The transverse displacement part of the matrices is based on Euler
beam theory. If the bedms being considered were deep, Timoshenko beam theory could
be used [8].

Similarly if in a particular problem it was important to represent accurately the
taper of a beam then a special element could be formulated. Expressions for say
the variation of the cross-sectional area and the second moment of area along the
length of an element would be assumed. The element matrices would be derived as
before but with these expressions included under the integration. The formulation
of plate and beam elements described can be varied to include additional effects

as a particular problem demands.
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Appendix 1

In-plane Plate Element

The degrees of freedom are in the order (ul’Vl’uz’VZ’US’VS’ud’Vd)’ where the nodes

are numbered as shown in Figure 1.

mass matrix

pabh r h
36

o r O M O N O b
=, O N O N O A
o Mo o O b

N O B O b

o N O b

stiffness matrix

ST | 2 7
a, 2a2
ag  -ag 2al
a, a, -a, 2a2
a8 ay -ay a, 2a1
—ag ag a, -a, -a, 2a
-2, -a, ag —ag ag ay 2a1
—a, —a, a3 a6 —a3 a, a, 2a2
o - 60b . 30(1i-v)a a = 60a N 30(1i-v)b a = 45(1-3v)
1 a b ’ 2 b a ’ 3 2 ’
A = 45(1+v) o = 30b 30(1-v)a a = 30a _ 30(1-v)b
4 2 ! 5 a b ’ 6 b a ’
a = -60a . 15(1-v)b a = ~60b N 15(1-v)a
7 b a ! 8 a b

where E 1is Young's modulus
p 1is density
v 1is Poisson's ratio

a and b are element length and breadth
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Appendix 2

Beam Element

The degrees of freedom are in the order

dw dv dw dv
Cws () 0 vy () + Uy 80 vy (dx) y Vo (dx) s Uy, 851
1 2 2
Mass matrix
pAa
420 156
22a 432
0 156
22a 4a?
0 0 0 140 140Ip
o 0 0 i
54 13a 0 0 156
-13a -3a? 0 0 0 0 22a 432
0 0 54 13a 0 0 0 0 156
0 0 -13a -3a? 0 0 0 0 22a 4a?
0 0 0 70 70 781 0 0 0 0 140 .,
0 0 0 0 0 p O 0 0 0 0 Ap

where Ip is the polar moment of inertia
A is cross-sectional area

[4 is density

a is element length
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Stiffness matrix

E 121
VA
a
6al  4a’l
z z
0 0 121
y
0 0 6al 43?1
y y
0 ) 0 0 a?a
2
0 0 0 0 o a8
-12I  -6al 0 0 ) 0 121
V4 z z
6al  2a’l 0 0 0 0 6al 4a?1
VA z z z
) 0 121 —6al 0 0 ) 0 121
y y
0 0 6al 2a?1 0 0 0 0 6al 4a?T
y y y y
0 0 0 ) -a?A 0 0 ) 0 0
a2
0 0 0 0 0 aTGJ 0 0 0 0

where E is Young's modulus
G 1is the shear modulus
A is cross-sectional area
a 1is element length
is polar 2nd moment of area

I ,I are the 2nd moments of area about the relevant axes.




CHAPTER 9

TRANSIENT RESPONSE OF STRUCTURES
by
J. Wilson

1. Introduction

A structural system undergoes transient vibration when the system is subject to a
change from one steady state of vibration to another. Strictly speaking, the term
'transient' should be applied to changes lasting a brief time only. However, it is

often applied to a continuous changing situation for an indefinite period of time.

It has been demonstrated earlier that a structure will settle down to a steady

state of vibration, when under the action of a constant amplitude harmonic force

(or set of forces, each of which is characterised by the same frequency), such that
all particles in the structure have the same frequency of vibration and a phase

angle which depends on the nature of the damping. When the frequency of the harmonic
force coincides with a natural frequency of the structure (or closely approaches it),

then resonance occurs and the amplitude of vibration may become very large.

When the force is not steady-state harmonic but is repetitive, the force can be
split into component steady state forces with different frequencies by means of a
Fourier series. Each component is treated separately as a steady state force,
giving rise to a steady state response. The total response can be obtained by
summing all the response components. An example of a repetitive force would be
found in the forces on the rubber mounting of a motor car engine running at constant
speed. In certain cases, the vibration resulting from a transient force may be

much more severe than that occurring at steady state. If we return to the motor

car example and take our foot off the accelerator so that the engine slows down
suddenly to idling speed, the engine may undergo large vibrations on its mountings

if it comes near to stalling.

2. Transient Response Without Damping

Consider a multi-degree of freedom system under the action of a set of forces
varying continuously with time and of an irregular nature. For the general case

we may take the discrete model shown in Figure 1.

The equations of motion may be written as

mpow o+ (kgksuge= kou, = p, (t) (1a)
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m {ij + (1<J.+1<J_+1)uj S kU - kg Uy pj(t) (j = 2,n-1) (1b)
m ﬁn +ku -ku . = pn(t) (1c)
They may also be expressed in matrix form as
A
(nxn) (nx1) (nxn) (nx1) (nx1)

where K, M and U are respectively the stiffness matrix, mass matrix and displace-

ment vector. P (t) 1is the force vector
(nx1)
{ pl(t) pz(t) . pj(t) cen pn(t) }

In general the actual loading on the structure will not be concentrated at discrete
points. However if we know the actual distributed loading we can always find a

statically equivalent loading system which is discrete.

As in Chapter 3, we can carry out a coordinate transformation from the original

displacement vector, U , to a normal coordinate vector q using equation
(23) of Chapter 3 (nx1) (nx1)
u = Z q (2)
(nx1) (n;n)(ngl)

where Z is the model matrix formed by the n normalized mode shape vectors, z

(nxn) (nx1)
Thus M z g + K Z q = P (t) (3)

(nxn) (nxn) (nx1) (nxn)(nxn) (nx1) (nx1)

If we premultiply equation (3) by ZT we find

(n;n)

(2" M 2) § + (% K %) q = 2 P(t) (4)

. T . . . A '
Again from Chapter 3, Z M Z 1is the unit matrix (by definition of Z) and ZT K Z

is the matrix of natural frequencies Q. Thus equatien (1) can be uncoupled into

a set of independent equations of the type

. ) _
a, +e *a. =z, pl(t) + 250 p2(t) e 4+ 2 p_(t) (5)

by-use.of ~the transformation.of .coordinates given in equation (2).
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The solution of equations (5) for qr(t) can be carried out by any suitable method
given for a one-degree of freedom system (e.g. Duhamel integral), and the dynamic
response of the whole system in terms of the original coordinates by using the

transformation, U =2 q again. Alternatively a numerical method of solution may

be employed. These methods will be discussed later.

3. Damping

3.1 Introduction

So far we have not considered the effect of the amount or nature of damping on the
response of the structure. If we keep to the strict definition of transient, i.e.
very brief changes, and if we assume that the damping is small, there is little
difference between the undamped transient response and the damped transient response.
However if we consider the term transient in the broadest sense of a continuously
changing irregular force and response then it may become necessary to introduce the
effects of damping. We have seen previously how the steady state behaviour of a
one-degree-of-freedom structural system may be considerably modified by the presence
of damping. The amount of modification depends upon the extent and type of damping

present.

Damping always exists in any structure although it is generally slight when compared
to the levels of damping found in mechanical systems. It may be so slight as to
render the response of the structure scarcely different from that predicted for

the undamped system. If we look at Figure 2 which shows the response of a

viscously damped one-degree-of-freedom system to a constant forcing function with
varying amounts of damping, we find that away from the natural frequency of the
system, there is very little difference in response for a large range of damping
factors. The same will be true of a multi-degree of freedom system, although of
course there is much more chance of encroaching on a natural frequency in this case.
In fact it is only when the exciting force has a frequency close to a natural

frequency that we need to take notice of damping.

3.2 Nature of Damping

Damping is basically a dissipation of energy which occurs in vibrating systems.
How can energy be dissipated in structures ? There are three ways in which energy

is dissipated.

(i) Energy dissipated within the materials of construction. We will call this
material damping. This varies from material to material. It can be small for most
structural steels and some reinforced concrete, although materials like timber

laminates may possess high damping.
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(ii) Energy dissipated at structural discontinuities, e.g. bolted and riveted
connections, construction joints in reinforced concrete structures. This we will
term discontinuity damping. Whereas material damping can be measured and predicted
by testing, it is much more difficult to predict the level of discontinuity damping.

It may vary greatly even for structures which are nominally identical.

(iii) Energy dissipated by the structures's environment e.g. air and water
resistance, and foundations. Again this is difficult to predict. Dissipation of
energy in the foundations occurs even when the foundation material is linear

elastic because of the propagation of stress waves through the foundation.

3.3 Representation of Damping

Damping from all these sources is conventionally represented in three ways, not
necessarily specifically related to a particular method of energy dissipation

listed above.

(a) Viscous damping
(b) Coulomb damping
(c) Hysteretic damping

It must be stressed that these are only ways of representing damping. They do not

imply a mechanism for damping.

(a) Viscous damping, analogous to the damping produced by motion of fluids, is
defined such that the damping force is proportional to a velocity. In the

viscously damped system shown in Figure 3a,

where c¢ is the viscous constant
U is the velocity of mass
fd is the damping
The minus sign shows that the force on the mass acts in the opposite direction to

the velocity of the body.

For a freely vibrating single degree of freedom system damped viscously as rep-

resented by Figure 3a, the equation of motion for this case becomes

(a) mu+cu+ku = O (7)
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We have already seen the solution for equation (7) is

Cc

~op *
u = Ae sin(wdt + a) (8a)
where w = / k —(E~) the damped natural frequency.
d m 2m’
. k X
By writing wl = o where wl is the natural frequency

cw_ ?

"éi—t !
u = Ae [ sin w1 —(—Eﬁ) t +al ] (8b)

where A and o are constants depending on the initial conditions. The logarithmic

decrement, &, for the free vibration is defined by

-an ch e e ncml
8§ = log, <an+l> = (K’:mdw—w—l = T

(9)

where Td is the damped natural period.
If we plot the form of the above curve we find that the motion is oscillatory with
exponentially decreasing amplitude such that logarithm of the ratio between any two

successive amplitudes is constant.

In general it can be shown that the energy dissipated per cycle when the system is
steadily excited by imposed forcing function of frequency @ such that the amplitude
is a, is given by

AU = 71 c¢c Q a? (10)

Hence energy loss increases as square of amplitude and is proportional to the

exciting frequency and the dashpot constant.

(b) Coulomb or frictional damping can be regarded as existing when the damping
force is a constant (depending only on the normal reaction) and opposes the motion

of the body

Ty = - g lsignd) = - ¢ = (11a)
|l
where £ is a constant.
Thus the equation of free vibration for a single degree of freedom becomes
u
mu+ § = +ku = O (11b)
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In the third case the solution for the free vibration for equation (7c) is

£ R £ . du .

u = (C+ k) sin (mnt + Y) - o with at positive (12a)
g X £ . du .

u = (c - k) sin (mnt +Y) + " with ot negative (12b)

If we assume that our system starts off displaced from the equilibrium position by
an amount C with zero initial velocity, the displacement will look like that shown
in Figure 6. The envelope of successive amplitudes is a straight line and the

motion does cease after a finite time. The frequency of the damped motion is not

altered by the presence of frictional damping as in the previous case.

(c) Hysteretic Damping. This is sometimes called 'structural' damping in some
text books. It was noticed that for some structures when excited by steady
amplitude forces, the measured energy dissipated per cycle (or the work done by
the applied forces) was independent of the frequency of the exciting force.

(Compare the case of viscous damping when Au = wcna® ).

In order to model this behaviour the term hysteretic damping (reference [1]) was
invented such that

AU = T h a2 (13)
where h 1is the hysteretic damping constant, and a is the amplitude of motion.

Now this definition of hysteretic damping happens to coincide with the definition
of 'structural' damping as stated by Clough and Penzien [2] for steady state

excitation.

Clough and Penzien [2] define structural damping for a single degree of freedom
system as being such that the damping force is proportional to displacement and

opposes the motion:

i.e. £y = - hlu 2 (14)
[l

Under any conditions other than steady state excitation, this definition is some-

what dubious. At steady state, it gives the same result as hysteretic damping,

namely,

AU = @ h &

The problem with this definition of hysteretic damping is that it can be shown to

flout the fundamental rule of causality, (see reference [3]), i.e. hysteretic
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damping implies that the present state of system depends not only on all its past
states but also on all future states. Some interesting philosophical problems

then arise. However, for steady state vibration, the state of the system is steady
for all time and hence present, future and past states are all known. Hence this

definition can be used for this one condition.

4. Damped Transient Response

4.1 Uncoupling the Equations of Motion

We will now consider the equations of motion for a discrete n-degree of freedom

system when viscous damping is present. (See Figure 6).

These may be written

mlﬁl + (cl+02)1:1l - c2ﬁ2 + (kl+k2)ul - k2u2 = pl(t)
mjﬁj + (cj+cj+l)ﬁj - Cjﬁj—l - Cj+lﬁj+l
+ (kj+kj+1)uj - kjuj—l - kj+luj+l pj(t) (j = 2,n-1)
mnﬁn + cnﬁn - Cnﬁn—l +kou - knun—l = pn(t) (15)
The equations can be written in matrix form
MU+cl+ky = ¢ (16)
where (.J is the velocity vectqr
{ ﬁl ﬁ2 N ﬁj P ﬁn }

and C is the damping matrix (which in this case has a similar form to the stiffness

matrix). Moreover if each damping constant has the form

c. = Ak K. + A m, (j =1,n) (17a)

C = A K+ A

R

(17b)

and the damping is said to be proportional. Substituting (17b) in (16) we obtain
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MU+ (A K+A MUK U = P (18)
~ ~ k ~ m~"~ ~ ~

Again a coordinate transformation can be introduced such that
U = 2q; U = 2q; U = 2gq

By pre-multiplying equation (18) by ZT throughout and using the transformations we

have
z™ 2)§ + Xk(ZTK Z)q + xm(zTM 2)q + (2K 2)q = z' P (19)
leading to
g+ O 2+ xml)é +2q = 2P = F(t) (20)
The equations are again uncoupled so that
.. 2 M 2 _
a, + (Xk w * o+ Xm)qr +wfa = fr(t) (21)

Again we can solve each equation for q. by a suitable method and obtain the

solution in terms of the original coordinate system by writing

Thus if we have a structure for which the damping is viscous and the matrix of
damping constants is proportional to the stiffness matrix and/or mass matrix, the

equations of motion can be uncoupled in terms of the normal mode shapes.

When the damping is not proportional the equations do not uncouple in terms of the
normal modes. However the equations of motion can be uncoupled by use of a complex

transformation matrix

where Z* is a complex matrix and g* is a complex vector. (See reference [2h.

4.2 Free Damped Vibrations

For free damped vibrations we may use equation (21) with fr(t) = 0 for all values

of r.

2 . 2
a, + (Ak w * o+ Xm)qr +o?q

I
(@}

r (22)
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Let us take Aow 24 A = A (23)

a + XA G +w? g = 0 (24)

The solution to this is given by equations (8). The logarithmic decrement for

free vibration in the rth mode is given by

8 = — (25)
r assuming 6r <<1

An interesting feature emerges from this equation. If the damping is assumed to
be proportional to the stiffness only (i.e. Am = 0 in equation (23)), then

A

r
E; = Ak and Gr = 7 Xk w (26)

This form of damping results when the material behaviour can be represented by a
Kelvin model consisting of a spring and a dashpot in parallel (see Figure 8a) and

the logarithmic decrements are proportional to frequency.

If logarithmic decrements for different modes of vibration are found to lie on a
straight line when plotted against the frequencies, we can say that the material of
which the structure is made is Kelvin. The damping may not be actually attributable

to the material source, but if it behaves so it can be treated in this manner.

Suppose now that a structure built of a Kelvin material has natural frequencies

wl, m2, ma etc. and two or more of these natural frequencies coincide. Then the
logarithmic decrements for the modes of vibration associated with these frequencies
will be the same. Also if two different structures composed of the same material,
happen to have a mutual natural frequency, then the logarithmic decrements will be
equal. (This statement assumes that only material damping is present). Further-
more, for any structure composed of the same Kelvin material, the logarithmic

decrement can always be found from one curve, (See Figure 8).

If we take the Kelvin model of Figure 7a and add sets of springs and dashpots in
series as indicated in Figure 7b, we obtain a general Maxwell model. This model
may be regarded as approximating, in the limit, the behaviour of a general linear

viscoelastic material.

For this type of model it can again be shown that the equations of motion will

uncouple. As a consequence of this, for a given material model we can plot §
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against and obtain a curve of the type shown in Figure 9. We can again say
that if several different structures have a common natural frequency, then the
logarithmic decrements for free vibration in the modes associated with that

frequency will be equal.

This fact may be used to predict logarithmic decrements of structures, built in
reinforced concrete, or any material which behaves in a viscoelastic manner.

(Note that concrete may be regarded as a hard viscoelastic material because it
creeps). The assumption inherent in this argument is that material damping is

the predominant source of damping. In practice what it means is that we can
measure the logarithmic decrements of one structure, plot a graph and predict
logarithmic decrements for other structures composed of the same material provided

we take account of natural frequencies.

4.3 Example

Logarithmic decrements of large reinforced chimneys

Figure 10 shows a plot of § against w for several larée reinforced concrete multi-
flue chimneys constructed at power stations throughout England and Wales. The data
is obtained from reference [4] . You will see from the graph that a straight line
has been drawn in through the points. (Note that the abscissae are plotted on a
log scale). Not all of the points fall on this line, but remember that in each
case the concrete mix was different. Moreover the Drax chimney has an artificial
source of damping introduced by supporting the chimney floors on rubber bearings.
If we neglect the results for the Drax chimney there remains only one point which
is remote from the line. This line could be used as a basis for predicting log-
arithmic decrements of similar chimneys, although it might be risky to extrapolate

from the line outside the range of information given.

5. Numerical Methods

It has been demonstrated that for undamped (or proportionally damped) structural
systems, the equations of motion governing the structural behaviour can be
uncoupled by a coordinate transformation involving the modal matrix Z. Thus we
can treat each uncoupled equation as a single degree of freedom system. In many
cases, the nature of the transient force is so complex that we cannot arrive at an

analytical solution and must resort to numerical methods of solution.

These can in general be applied to the original coupled equations as they stand or
the uncoupled set of equations. To illustrate some numerical methods, a single
degree of freedom system will be considered since this is representative of the

uncoupled equations arising from a multi-degree of freedom system.
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5.1 Finite Difference Method

Let us take first as an example the differential equation for a single degree of

freedom undamped vibration excited by a transient (irregular) force, p(t);

mu+ku = p(t) where G =0, u=0att=20
. d2u
and write as mggz t ku o= p(t) (27)

Let us consider how p and u might vary at fixed steps in time, h, as shown in

Figure 11.

Suppose that we wish to approximate the velocity of the body in any interval h,

we would have (referring to Figure 12) that

(u, - u,
u = —-————-——Jl)
(3+%) h
Similarly ﬁ(

AN h

Now if we want the acceleration at time t = jh

6 - Sy - —Gwon” "GeWn
J 7 odt ] h
B uj+1 - 2uj + uj_1
B h (28)

Substituting this in equation (27) for the jth time step we have

m

+
=
[+
i

e

h? J J
Lou + | k 2m u, + = u =
h? Y41 h? 3 h? Y- TP
h2
Multiply by ae gives
kh? h?
uj+l * [ m 2 } uj + uj—l “ hn DJ. (29)
k 2 .

But n mn where wn is the natural frequency of the system. Therefore

equation (29) becomes

2, 2 _ - =
uj+l + (h W 2)uj + uj_ = p. (30)
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Example
Let us take the simple case when m =1, wn =1 and h ='1. Substituting these

values in equation (30) we obtain

We can rewrite this as

Let us assume that the force, p, is zero for t < O and has a constant value of 3

for t > 0. Thus po =pl = p2 = etc. = 3.

Thus equation (31) for t < O becomes

= .- u, 2
uj+l 3+ uJ uJ_l (32)
We start at the first step with j = 0. At this point in time uj = 0 and uj—l = 0.
Thus u, = 3. We can then go on one step in time and put j = 1. This gives
u, = 3 + u1 + u = 6

So we can go on marching forward in time to obtain the response of our system
numerically. For the first thirteen time steps, the values of u are given by
applying equation (32) successively. They are listed in the following table and
plotted in Figure 13.

The periodicity is thus 6h = 6 sec. Since the natural frequency is 1 rad/sec
i.e. %; cycles/sec. the period of vibration is 27 secs = 6.28 sec. Our
numerical calculation gives 6 sec. Thus the numerical analysis distorts the
natural frequency. We also see that the vibration takes place about a displaced
position given by u = 3 corresponding to the static displaced position, since the

static displacement, xs, is given by

p

The amplitude of the motion is seen to be slightly greater than 6 if we draw in a

curve. The computed maximum displacement is thus twice the static displacement.
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Now let us take a time step of % second. Our numerical formula becomes

- 1. . . %p. . 33
uj+1 1 75uJ + uJ_l ApJ (33)

Rearranging equation (33) gives

0.75 + 1.75u, - u (34)

= 0.25p, + 1.75u, - u, .
“ Pj J j-1 J j-1

j+1

since pj =3 for j 21

uy = ]

u, = 0.7 + 0 -0 =0.75

u, = 0.75 + 1.75 x 0.75 - 0 = 2.06

uy = 0.75 + 1.75 x 2.06 - 0.75 = 3.60
u, = 0.75 + 1.75 x 3.60 - 2.06 = 4.98
ug = 0.75 + 1.75 x 4.98 - 3.60 = 5.88
Ug = 0.75 + 1.75 x 5.88 - 4.98 = 6.07
u, = 0.75 + 1.75 x 6.07 - 5.88 = 5.50
ug = 0.75 + 1.75 x 5.50 - 6.07 = 4.31
ug = 0.75 + 1.75 x 4.31 - 5.50 = 2.79
Uyg = 0.75 + 1.75 x 2.79 - 4.31 = 1.32
ug = 0.75 + 1.75 x 1.32 - 2.79 = 0.27
U, = 0.75 + 1.75 x 0.27 - 1.32 = -.0.10
Uy g = 0.75 - 1.75 x 0.10 - 0.27 = 0.30
Ui, = 0.75 + 1.75 x 0.30 + 0.10 = 1.38

As we take our time step smaller and smaller, so our results become more accurate.
When the step is small enough we cannot distinguish between the exact solution for

the problem
u(t) = 3(1 - cos t) (35)

and the approximate numerical solution.

If too large a time step is chosen, the process becomes unstable. Numerical
processes do not always give solutions which agree closely with analytical. The
reasons for this can be several. Sometimes if the process used is a marching one,
where we know all quantities from the previous steps and need to know the current
values, it may become unstable. By this we mean that any numerical error introduced
in the calculation increases in magnitude until it swamps the actual solution.

Sometimes. an iterative process.is.used when the solution is expressed in the form

x = f(x)
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We guess an initial value of x, Xy substitute it in f(x) and work out X, = f(xo).
We then take the new value of x, Xy and work out X, = f(xl) until X1 = Xt €
where € 1is an acceptable error. In this sort of process we need convergence.
Sometimes this does not happen. Fortunately in most cases by looking at the

equations we can establish convergency and stability limits.

A great advantage of numerical methods is that we can easily use digital computers

to work out solutions for us.

5.2 Newmark B Method

There are other numerical methods which may be used. One fairly accurate and
simple method is the Newmark B method [5]. In this method we assume variations
for the velocity, u, and displacement, u, in the time interval h to be such that
the values at beginning and end of the time step (subscripts O and 1 respectively)

are related by equations of the form

W= U+ (1 - v)h u, o+ h uy (36a)
_ \ Y o_ 2 2
uo= ou o+ h u, o+ (% - B)h u, o+ B h uy (36b)
where B and vy are constants. It has been shown that unless Y = %, an error is

introduced. B can have any desired value. Certain values of B and v have physical
significance, but in general this is not so. For instance B8 = % and B =%
corresponds to constant accelerations in the time interval and 8 = 1/6 to linear
acceleration. Y = % corresponds to linear acceleration variation in the time

interval.

If we apply the Newmark B method to the previous problem we have

mu+ku = p(t) where p(t) 0O for t <O

1]

p(t) = P, for t >0
u:O,\l:Oatt—O

Then we have at the beginning of the time step
mUu + ku = p

(o} [e] (o]

and at the end

Substituting. for ﬁo and ﬁl from equations (36) we obtain
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Figure 14

Lime, Secs

Figure 15

Figure IS shows a comparic<sn belween the results obtainei for the
displacement, u, in the pr hlem by four methods,
(i) Finite difference method, h = 1 sec.

(ii; Finite difference method, h = 0.5 sec.

| sec.
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p
. [e} k
o= ou o+ (1 - v)h ( — uo)
P
+ Yh (—l——-lsu) (37a)
m m 1
p p
o= u +ho o+ (B-8)R? (2 -Euy cen (oK) (37b)
1 [¢] o m m o m m 1

Expressing the unknown quantities at the end of the time interval in terms of the

: k
known quantities at the beginning we have (putting o= wnz)

. h? gh?
2, 2y _ (Y 2, 2 1y_
ul(1+8h © ) = ug [ 1 (%-B)h 0 ] + uoh + (%-8) el S ! (38a)
G, + Yh w 2u, =4 - (1-y)hw %u_+ (1-Y) h P+ YE p (38b)
1 n 1 o n o m o m -1
Thus we have
w, = — (1 - Use)htw ?lu +hd o+ (48) Zop 4 BRE L, (39a)
1 1+Shzmn2 2 n o (o) 2 m To m 1
W = {- yhe %u, +u_ - (1-v) hw 2u +(L«)Ep +'YEp } (39b)
1 n 1 [¢] n o m-o m 1

As stated previously, unless Y = 4 extraneous damping is introduced into the

equations. Putting Y = )% in equation (39b) leads to
O = {4 -%he 2(u +u) +% h (p_ + p,) } (40)
1 o n 1 o m o 1

Let us now carry out the calculations of the previous example with B = %, h =1,

w =1, m=1. Equations (39a) and (40) give

n
3 4 . 1 1
W= gu +tgU +fEP +EP (41a)
. 1 1 1 1
b - N S R B ISR | (41b)

and the values of u and U for the first nine time steps (j = 0 to j = 8) are given

in the following table.

Step
Number 0 1 2 3 4 5 6 7 8
u 0 1.2 3.84 5.82 5.51 3.20 0.73 0.07 1.76

a 0 2.4 2.88 1.03 -1.63 -2.98 -1.95 0.65
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Figure 14 shows a comparison between the results obtained for the displacement, u,
in the problem by four methods,

(i) Finite difference method, h = 1 sec.

(ii) Finite difference method, h = 0.5 sec.

(iii) Newmark B method, h = 1 sec.

(iv) Exact solution.

In addition to these methods illustrated there are many more numerical methods of

solving the general differential equation of damped force vibration
mUu+clU+ku = p(t)

These include Runge-Kutta, Galerkin etc. All these methods will be prone to
numerical instabilities etc. but by choice of a suitable time interval they can be
overcome. In general the shorter the time interval the more accurate is the
solution and the less likelihood there is of instability. Of course the penalty

is longer time for computation.

Numerical methods have all been developed for single degree of freedom systems.
They can easily (from a computer viewpoint) be modified to suit a multi-degree of
freedom system. However in this case the time interval will have to be very small
in order to avoid numerical difficulties with some of the higher frequency
components of the vibrations. Accuracy will of course improve but the law of

diminishing returns will apply in most cases.

For a structure which has proportional damping, we may uncouple the equations in

terms of the normal modes and solve each equation of the type
m g +c_ 4§ + kr Q. = pr(t)

as was demonstrated previously. Finally the solutions can be recombined. The
advantages of this method are that different time intervals can be used. However
modern computers are so big and fast that there is really no need to uncouple the
equations. It is just as easy to manipulate the matrices. For non-proportional

damping this method would have to be used in any case.
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CHAPTER 10

MACHINE FOUNDATIONS
by

R.R. Wilson

1. Introduction

Many factors have to be taken into account when a foundation is designed for a
machine. In particular for rotating machinery, such as pumps, blowers or turbines,
a knowledge of the vibrational characteristics of a foundation is of great import-
ance [1],[2]. 1In this chapter, the principles of the design of a foundation
subject to dynamic loading are introduced and discussed with reference to simple
mass-spring systems. The use of undamped and damped dynamic absorbers is con-
sidered and finally an analysis is described in which the finite element method

is used to predict the dynamic behaviour of turbine foundations.

Three separate but closely related vibration problems can occur in the design of

a machine foundation. Firstly there is the question of insulation of a machine
from its surroundings. It is often important to ensure that only a small fraction
of the force caused by the operation of the machine is transmitted through the
foundation to the surrounding structure. For example in a hospital it is desirable
that little vibration should be transmitted to the building from a compressor.

The opposite situation also occurs; it may be necessary to design a foundation

to protect a machine from vibrations occurring in the surroundings.

The second considération in the design of a foundation is that the structure of

the foundation must be able to withstand the amplitudes of vibration induced by

the forcing from the machine. The vibration amplitudes may also be important if
auxiliary equipment is mounted on the foundation or pipes supported on the

structure.
Finally the influence the foundation has on the operation of the machine must be
considered. The critical speeds of a machine on a flexible foundation are much

lower than the critical speeds of the same machine rigidly supported.

2. Transmissibility of a Foundation on a Rigid Base

A single degree of freedom can be used to represent a machine and foundation on a
rigid base as shown in Figure 1. The foundation is considered as a spring k and
a dashpot ¢ connecting a machine of mass m to a rigid base. Any parts of the

foundation moving with the machine are included in the mass m. The operation of
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P sin wt

machine

c foundation

7777 base

Figure 1| Machine with Foundation on Rigid Base
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the machine gives rise to a sinusoidally varying force P sin wt. The equation of
motion of this system is

mu+cU+ku = P sinwt . (1)

After sufficient time has elapsed for the transient component to die away, we are

left with the steady state solution (as given by equation 50 in Chapter 2),

u = P sin (wt - a) (2)

Vik-mw?)? + w2c?

we
k~mw? (3)

where tan a =

The force transferred to the supporting structure is the sum of the force in the
spring (ku) and the force in the dashpot (cl). Thus the amplitude of the force is
given by

po=  Jku)Z ¢ (cd)? (4)

Substituting for u and U from equation (2)

PAT T o707
P, = (5)
T V(k-mw?)? + w2c?

The transmissibility of a foundation is defined by

transmissibility = t‘;ran;i:;:zzdfiizze . (6)

Y
K T, - + clw (7)
: /(k-m?)? + w? c?

The natural frequency of the system is wn =//% , and the critical damping
¢ =2 /km .
c

/ cw 2
1+ (2 P )

w
/ 2 .2
Thus TR:/ cn - Lrdy r , (8)
TR cw 2 (1-r2)2 4+ 4y2pr?2
(1 (wn) )2+ (2 Ei;j; )

wher = = .
e Y c/cC and r m/mn
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The transmissibility is a function of the ratios r and vy as shown in Figure 2. It
can be seen that for the force transmitted by the foundation to be small, r should
be large, i.e. the foundation should have a natural frequency much less than the

operating speed of the machine it supports.

When o < /2 w then TR > 1, and the force transmitted by the foundation is
greater than the force applied by the machine. In this range of operating speeds
an increase in damping reduces the force transmitted. However, for operating
speeds where w > /2 W, then the higher the damping, the higher the force trans-
mitted. This suggests that the damping in a machine foundation should be as low
as possible to reduce the force transmitted. In practice, however, a foundation
has higher resonances in addition to the fundamental resonance considered above.
If the machine is operating near one of these higher resonances then it is the

damping in the foundation that prevents very large forces being transmitted.

Thus, despite the result of the above analysis, it is probably not desirable to
reduce the damping of a foundation in order to lower forces transmitted. Con-
versely, this analysis does suggest why, when faced with excessive forces being
transmitted, it is often preferable to vary the stiffness of the foundation or

mass of the machine rather than to attempt to increase the damping of the system.

3. Transmissibility of a Foundation on a Flexible Base

In the previous section it was assumed that the structure to which the foundation
was connected did not move. In many situations this is not a realistic assumption.
For example, with an aircraft engine mounted on the wing of the aeroplane or a
turbine supported on the hull of a ship, the area surrounding the point of support
will move the base of the foundation. This can be represented by the two degree

of freedom system shown in Figure 3, where m_, represents the mass of the supporting

2
structure which moves with the foundation. To simplify the analysis, the damping

of the system has been neglected.

The equations of motion are

mlﬁl + k(ul - u2) = P sih ot (9)

m2ﬁ2 - k(ul - u2) = 0 (10)
Assuming solutions of the form

w = A sinwt (11)

u, = A, sin wt (12)

2 2
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2 =
then Al(k—mlm ) - A2k = P (13)
_ — 2 -
Ak + A, (k-m,0?) 0 (14)
The natural frequencies of the system are given by the zeros of the-.equation
(k—mlwz)(k—mng) - k2 = 0 (15)
This gives two solutions,
m,o+m,
w, 2= 0 and w,? = k|[——— (16)
1 2 m,m,

The zero natural frequency arises because, since the system is not constrained, it

can execute rigid body motion.

The amplitude of the steady state response is calculated by solving equations (13)

and (14). Expressing A1 in terms of A2 from equation (14), gives

(k—mzwz)

A= by a7

Substituting into equation (13),
] 2 — 2

. (k L ) (k m,w ) . o (18)

2 k -
. kP
i.e. A, = (19)

_ 2 — 2 - 2
(k m, © Y (k U ) k

The force transmitted to the supporting structure is mzﬁz and hence the magnitude

of this transmitted force is

T m, A2 (20)

- m.w? kP
i.e P = 2 (21)
: T

- 2 - 2 _ 2
(k mlw ) (k Mo ) k

The transmissibility of the foundation is given as

P
T
7 (22)

Thus from equation (19),

(23)
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1
i.e. T = 5 (24)
R m1+m2 m1 w
Mo kmy
m
TR = m im 1w2 (25)
1+ -t
n

Hence, as was shown previously for a foundation on a rigid base, we have the
result that the lower the natural frequency of the system, the smaller the force

transmitted.

If we now extend the analysis to the rather more realistic situation shown in
Figure 4 where, instead of being completely free to move, the base of the found-
ation offers resistance to motion. The mechanical impedance Z(w) of the base
structure can be defined as the force at frequency w required to produce a unit

displacement.

. B applied force
1-e 2(w) = displacement (26)

The motion of the system is described by the equations

m Uy o+ k(ui—uz) = P sin wt (27)

- k(ul—uz) = uZZ(m) (28)

If the base could be represented as an unconstrained mass m,, as considered
previously, then Z(w) = mzwz, and equation (28) reduces to equation (10).

Equations (27) and (28) can be solved as before to give

P
A, = k (29)
_ 2 - 2
Z(w)(k m, © ) kmlm

The magnitude of the transmitted force is given by

Pp o= A, Z(w) , (30)

and so the transmissibility is

= — (31)
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) P sinwt
l‘ m, machine
|
kl bearing
u, ™)
k2 foundation
base

Figure 5 Machine-Bearing~Foundation System

transmissibility, TR

N

machine speed, w

o —

Figure 6 Variation of Transmissibility for a Machine-
Bearing-Foundation System
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T, = Z(w) k (32)

R 2 2
Z(w)(k—mlw ) - km. @

The mechanical impedance depends on the nature of the base. For example, if the
foundation rests on a concrete raft on soil then the mechanical impedance can be
determined in terms of a spring, mass and dashpot model of the soil, with, in

general, each of the constants frequency dependent. It is also possible to find
Z(w) experimentally. The displacement produced by a vibrator applying a harmonic

force can be measured as a function of the applied force.

4, Low Tuned and High Tuned Foundations

If a machine is flexibly mounted on its foundation through, for example, bearings,
and the foundation is connected to a rigid base, then the system may be idealized

as the two degree of freedom system shown in Figure 5.
The equation of motion of the system is

mu, o+ kl(ul-u2) = P sin wt (33)

m.u, - k,(u

Y2 1" u = 0 (34)

—u2) + k2 5

Assuming once again solutions of the form

u = Al sin ot and u, = A2 sin ot (35)

and substituting into equations (33) and (34) gives

-] 2 _— =
Al(kl mlm) Ak, = P (36)

- Ak, + A2(k1+k

1K -mow?) = O (37)

2 2

Substituting for A, from equation (36) into (37),

2
kZ
1
A[k—mwz————-—————-z—]=P (38)
1 1 1 (kl+k2—m2m )
Thus (kl+k2—m2mz)P
A1 = (39)

— 2 — 2y _ 2
(k:L m o )(kl+k2 mw ) Kk
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amplitudes, Al and Az
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machine speed, W

Figure 7 Foundation and Shaft Amplitudes for a Machine on a
Low Tuned Foundation

amplitydes, A and A
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Figure 8 Foundation and Shaft Amplitudes for a Machine
on a High Tuned Foundation
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and k. P
A = 1

- - 2
2 (kl m, w )(kl+k

oMo ®) (40)

The force transmitted to the base is PT = kA, and the transmissibility TR is

22
given by
T = EE - k_ZA_Z (41 )
R ~ P - P
. T - e (42)
- — 2 ) 2
R (kl m, @ )(kl+k2 m,w )

The variation of the transmissibility with the frequency of the applied force is

shown in Figure 6.

In designing a fixed speed machine there are two basic decisions. Firstly should
the machine run above or below the first critical speed of the shaft? (VEI7EI in
the system considered above). Secondly should the foundation be low tuned or
high tuned ? 1i.e. should the first natural frequency of the foundation on its

own (/EZ/mz) be below or above the running speed of the machine? [3],[4].

Table 1 summarizes the four possibilities.

Low tuned foundations, High tuned foundations
low critical speed of low critical speed of
shaft shaft
Low tuned foundations, High tuned foundations
high critical speed of high critical speed of
shaft shaft

Table 1 Design Possibilities for Fixed Speed Machine

The possibility of having a low critical speed is really only applicable to larger
machines with long flexible shafts. For a particular fixed speed machine having
its first critical above running speed [3], Figures 7 and 8 shows the variation of
foundation and shaft amplitude with frequency for a low tuned and a high tuned

foundation.

5. Dynamic Absorber

When a machine on a foundation is operating near its resonance, it is possible to
reduce. the vibration amplitudes by.attaching a dynamic absorber. This can be

represented by an additional<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>